Pathway to Future Symbiotic Creativity
- URL: http://arxiv.org/abs/2209.02388v2
- Date: Wed, 13 Sep 2023 08:37:39 GMT
- Title: Pathway to Future Symbiotic Creativity
- Authors: Yike Guo, Qifeng Liu, Jie Chen, Wei Xue, Jie Fu, Henrik Jensen,
Fernando Rosas, Jeffrey Shaw, Xing Wu, Jiji Zhang, Jianliang Xu
- Abstract summary: We propose a classification of the creative system with a hierarchy of 5 classes, showing the pathway of creativity evolving from a mimic-human artist to a Machine artist in its own right.
In art creation, it is necessary for machines to understand humans' mental states, including desires, appreciation, and emotions, humans also need to understand machines' creative capabilities and limitations.
We propose a novel framework for building future Machine artists, which comes with the philosophy that a human-compatible AI system should be based on the "human-in-the-loop" principle.
- Score: 76.20798455931603
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This report presents a comprehensive view of our vision on the development
path of the human-machine symbiotic art creation. We propose a classification
of the creative system with a hierarchy of 5 classes, showing the pathway of
creativity evolving from a mimic-human artist (Turing Artists) to a Machine
artist in its own right. We begin with an overview of the limitations of the
Turing Artists then focus on the top two-level systems, Machine Artists,
emphasizing machine-human communication in art creation. In art creation, it is
necessary for machines to understand humans' mental states, including desires,
appreciation, and emotions, humans also need to understand machines' creative
capabilities and limitations. The rapid development of immersive environment
and further evolution into the new concept of metaverse enable symbiotic art
creation through unprecedented flexibility of bi-directional communication
between artists and art manifestation environments. By examining the latest
sensor and XR technologies, we illustrate the novel way for art data collection
to constitute the base of a new form of human-machine bidirectional
communication and understanding in art creation. Based on such communication
and understanding mechanisms, we propose a novel framework for building future
Machine artists, which comes with the philosophy that a human-compatible AI
system should be based on the "human-in-the-loop" principle rather than the
traditional "end-to-end" dogma. By proposing a new form of inverse
reinforcement learning model, we outline the platform design of machine
artists, demonstrate its functions and showcase some examples of technologies
we have developed. We also provide a systematic exposition of the ecosystem for
AI-based symbiotic art form and community with an economic model built on NFT
technology. Ethical issues for the development of machine artists are also
discussed.
Related papers
- Alien Recombination: Exploring Concept Blends Beyond Human Cognitive Availability in Visual Art [90.8684263806649]
We show how AI can transcend human cognitive limitations in visual art creation.
Our research hypothesizes that visual art contains a vast unexplored space of conceptual combinations.
We present the Alien Recombination method to identify and generate concept combinations that lie beyond human cognitive availability.
arXiv Detail & Related papers (2024-11-18T11:55:38Z) - Diffusion-Based Visual Art Creation: A Survey and New Perspectives [51.522935314070416]
This survey explores the emerging realm of diffusion-based visual art creation, examining its development from both artistic and technical perspectives.
Our findings reveal how artistic requirements are transformed into technical challenges and highlight the design and application of diffusion-based methods within visual art creation.
We aim to shed light on the mechanisms through which AI systems emulate and possibly, enhance human capacities in artistic perception and creativity.
arXiv Detail & Related papers (2024-08-22T04:49:50Z) - Equivalence: An analysis of artists' roles with Image Generative AI from Conceptual Art perspective through an interactive installation design practice [16.063735487844628]
This study explores how artists interact with advanced text-to-image Generative AI models.
To exemplify this framework, a case study titled "Equivalence" converts users' speech input into continuously evolving paintings.
This work aims to broaden our understanding of artists' roles and foster a deeper appreciation for the creative aspects inherent in artwork created with Image Generative AI.
arXiv Detail & Related papers (2024-04-29T02:45:23Z) - AI Art Neural Constellation: Revealing the Collective and Contrastive
State of AI-Generated and Human Art [36.21731898719347]
We conduct a comprehensive analysis to position AI-generated art within the context of human art heritage.
Our comparative analysis is based on an extensive dataset, dubbed ArtConstellation''
Key finding is that AI-generated artworks are visually related to the principle concepts for modern period art made in 1800-2000.
arXiv Detail & Related papers (2024-02-04T11:49:51Z) - DreamCreature: Crafting Photorealistic Virtual Creatures from
Imagination [140.1641573781066]
We introduce a novel task, Virtual Creatures Generation: Given a set of unlabeled images of the target concepts, we aim to train a T2I model capable of creating new, hybrid concepts.
We propose a new method called DreamCreature, which identifies and extracts the underlying sub-concepts.
The T2I thus adapts to generate novel concepts with faithful structures and photorealistic appearance.
arXiv Detail & Related papers (2023-11-27T01:24:31Z) - Art and the science of generative AI: A deeper dive [26.675816750583138]
generative AI can produce high-quality artistic media for visual arts, concept art, music, fiction, literature, video, and animation.
We argue that generative AI is not the harbinger of art's demise, but rather is a new medium with its own distinct affordances.
arXiv Detail & Related papers (2023-06-07T04:27:51Z) - Art Creation with Multi-Conditional StyleGANs [81.72047414190482]
A human artist needs a combination of unique skills, understanding, and genuine intention to create artworks that evoke deep feelings and emotions.
We introduce a multi-conditional Generative Adversarial Network (GAN) approach trained on large amounts of human paintings to synthesize realistic-looking paintings that emulate human art.
arXiv Detail & Related papers (2022-02-23T20:45:41Z) - AI-based artistic representation of emotions from EEG signals: a
discussion on fairness, inclusion, and aesthetics [2.6928226868848864]
We present an AI-based Brain-Computer Interface (BCI) in which humans and machines interact to express feelings artistically.
We seek to understand the dynamics of this interaction to reach better co-existence in fairness, inclusion, and aesthetics.
arXiv Detail & Related papers (2022-02-07T14:51:02Z) - State of the Art on Neural Rendering [141.22760314536438]
We focus on approaches that combine classic computer graphics techniques with deep generative models to obtain controllable and photo-realistic outputs.
This report is focused on the many important use cases for the described algorithms such as novel view synthesis, semantic photo manipulation, facial and body reenactment, relighting, free-viewpoint video, and the creation of photo-realistic avatars for virtual and augmented reality telepresence.
arXiv Detail & Related papers (2020-04-08T04:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.