Multi-Modal Experience Inspired AI Creation
- URL: http://arxiv.org/abs/2209.02427v2
- Date: Wed, 4 Sep 2024 14:17:15 GMT
- Title: Multi-Modal Experience Inspired AI Creation
- Authors: Qian Cao, Xu Chen, Ruihua Song, Hao Jiang, Guang Yang, Zhao Cao,
- Abstract summary: We study how to generate texts based on sequential multi-modal information.
We firstly design a multi-channel sequence-to-sequence architecture equipped with a multi-modal attention network.
We then propose a curriculum negative sampling strategy tailored for the sequential inputs.
- Score: 33.34566822058209
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI creation, such as poem or lyrics generation, has attracted increasing attention from both industry and academic communities, with many promising models proposed in the past few years. Existing methods usually estimate the outputs based on single and independent visual or textual information. However, in reality, humans usually make creations according to their experiences, which may involve different modalities and be sequentially correlated. To model such human capabilities, in this paper, we define and solve a novel AI creation problem based on human experiences. More specifically, we study how to generate texts based on sequential multi-modal information. Compared with the previous works, this task is much more difficult because the designed model has to well understand and adapt the semantics among different modalities and effectively convert them into the output in a sequential manner. To alleviate these difficulties, we firstly design a multi-channel sequence-to-sequence architecture equipped with a multi-modal attention network. For more effective optimization, we then propose a curriculum negative sampling strategy tailored for the sequential inputs. To benchmark this problem and demonstrate the effectiveness of our model, we manually labeled a new multi-modal experience dataset. With this dataset, we conduct extensive experiments by comparing our model with a series of representative baselines, where we can demonstrate significant improvements in our model based on both automatic and human-centered metrics. The code and data are available at: \url{https://github.com/Aman-4-Real/MMTG}.
Related papers
- Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Twist Decoding: Diverse Generators Guide Each Other [116.20780037268801]
We introduce Twist decoding, a simple and general inference algorithm that generates text while benefiting from diverse models.
Our method does not assume the vocabulary, tokenization or even generation order is shared.
arXiv Detail & Related papers (2022-05-19T01:27:53Z) - Learning Sequential Latent Variable Models from Multimodal Time Series
Data [6.107812768939553]
We present a self-supervised generative modelling framework to jointly learn a probabilistic latent state representation of multimodal data.
We demonstrate that our approach leads to significant improvements in prediction and representation quality.
arXiv Detail & Related papers (2022-04-21T21:59:24Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Multimodal Adversarially Learned Inference with Factorized
Discriminators [10.818838437018682]
We propose a novel approach to generative modeling of multimodal data based on generative adversarial networks.
To learn a coherent multimodal generative model, we show that it is necessary to align different encoder distributions with the joint decoder distribution simultaneously.
By taking advantage of contrastive learning through factorizing the discriminator, we train our model on unimodal data.
arXiv Detail & Related papers (2021-12-20T08:18:49Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z) - On Adversarial Robustness of Synthetic Code Generation [1.2559148369195197]
This paper showcases the existence of significant dataset bias through different classes of adversarial examples.
We propose several dataset augmentation techniques to reduce bias and showcase their efficacy.
arXiv Detail & Related papers (2021-06-22T09:37:48Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
We develop a contrastive framework for generative model learning, allowing us to train the model not just by the commonality between modalities, but by the distinction between "related" and "unrelated" multimodal data.
Under our proposed framework, the generative model can accurately identify related samples from unrelated ones, making it possible to make use of the plentiful unlabeled, unpaired multimodal data.
arXiv Detail & Related papers (2020-07-02T15:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.