論文の概要: Unifying Generative Models with GFlowNets
- arxiv url: http://arxiv.org/abs/2209.02606v1
- Date: Tue, 6 Sep 2022 15:52:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-07 12:20:23.136478
- Title: Unifying Generative Models with GFlowNets
- Title(参考訳): GFlowNetsで生成モデルを統一する
- Authors: Dinghuai Zhang, Ricky T. Q. Chen, Nikolay Malkin, Yoshua Bengio
- Abstract要約: 本稿では, 既存の深層生成モデルとGFlowNetフレームワークの関連性について, 重なり合う特性に光を当てて概説する。
これは、トレーニングと推論アルゴリズムを統一する手段を提供し、生成モデルの集合を構築するためのルートを提供する。
- 参考スコア(独自算出の注目度): 85.38102320953551
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There are many frameworks for deep generative modeling, each often presented
with their own specific training algorithms and inference methods. We present a
short note on the connections between existing deep generative models and the
GFlowNet framework, shedding light on their overlapping traits and providing a
unifying viewpoint through the lens of learning with Markovian trajectories.
This provides a means for unifying training and inference algorithms, and
provides a route to construct an agglomeration of generative models.
- Abstract(参考訳): 深層生成モデリングのフレームワークは数多く存在し、それぞれに独自のトレーニングアルゴリズムと推論メソッドが提示されることが多い。
本稿では,既存の深層生成モデルとgflownetフレームワークとの接続について,その重複する特徴に光を当て,マルコフ軌跡を用いた学習レンズを通して統一的な視点を提供する。
これは、トレーニングと推論アルゴリズムを統一する手段を提供し、生成モデルの集合を構築するためのルートを提供する。
関連論文リスト
- JanusFlow: Harmonizing Autoregression and Rectified Flow for Unified Multimodal Understanding and Generation [36.93638123812204]
画像の理解と生成を単一のモデルで統一する強力なフレームワークであるJanusFlowを紹介します。
JanusFlowは自動回帰言語モデルと修正フローを統合する。
論文 参考訳(メタデータ) (2024-11-12T17:55:10Z) - Grounding and Enhancing Grid-based Models for Neural Fields [52.608051828300106]
本稿では,グリッドモデルに関する理論的枠組みを紹介する。
このフレームワークは、これらのモデルの近似と一般化の挙動がグリッド接カーネル(GTK)によって決定されることを指摘している。
導入されたフレームワークは、Multiplicative Fourier Adaptive Grid(MulFAGrid)と呼ばれる新しいグリッドベースモデルの開発を動機付けている。
論文 参考訳(メタデータ) (2024-03-29T06:33:13Z) - On the Role of Edge Dependency in Graph Generative Models [28.203109773986167]
本稿では,グラフ生成モデルのための新しい評価フレームワークを提案する。
我々は、精度とエッジの多様性の両方を保証するために、モデル生成グラフの重複の重要性に焦点をあてる。
我々の単純な解釈可能なモデルが、一般的な生成モデルと競合するベースラインを提供することを示す。
論文 参考訳(メタデータ) (2023-12-06T18:54:27Z) - Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC [102.64648158034568]
拡散モデルは、多くの領域において、生成モデリングの一般的なアプローチとなっている。
本稿では,新しい構成演算子の利用を可能にする拡散モデルのエネルギーベースパラメータ化を提案する。
これらのサンプルは、幅広い問題にまたがって構成生成の顕著な改善につながっている。
論文 参考訳(メタデータ) (2023-02-22T18:48:46Z) - Internal Representations of Vision Models Through the Lens of Frames on
Data Manifolds [8.67467876089153]
多様体の接束上のフレームの概念から着想を得た、そのような表現を研究するための新しいアプローチを提案する。
私たちの構成は、ニューラルネットワークフレームと呼ばれ、データポイントの特定の種類の摂動を表すベクトルの集合を組み立てることによって形成されます。
ニューラルフレームを用いて、データポイントの小さな近傍でモデル、層間、特定の変動モードの処理方法について観察する。
論文 参考訳(メタデータ) (2022-11-19T01:48:19Z) - Improving Label Quality by Jointly Modeling Items and Annotators [68.8204255655161]
雑音アノテータから基底真理ラベルを学習するための完全ベイズ的枠組みを提案する。
我々のフレームワークは、ラベル分布上の生成的ベイズソフトクラスタリングモデルを古典的なDavidとSkeneのジョイントアノテータデータモデルに分解することでスケーラビリティを保証する。
論文 参考訳(メタデータ) (2021-06-20T02:15:20Z) - Deep Generative Modelling: A Comparative Review of VAEs, GANs,
Normalizing Flows, Energy-Based and Autoregressive Models [7.477211792460795]
ディープジェネレーションモデリングは、ディープニューラルネットワークをトレーニングしてトレーニングサンプルの分布をモデル化するテクニックのクラスです。
このコンペンディウムはエネルギーベースのモデル、変分オートエンコーダ、生成的逆ネットワーク、自己回帰モデル、正規化フローをカバーする。
論文 参考訳(メタデータ) (2021-03-08T17:34:03Z) - Explanation-Guided Training for Cross-Domain Few-Shot Classification [96.12873073444091]
クロスドメイン・ショット分類タスク(CD-FSC)は、データセットで表されるドメインをまたいで一般化する要件と、少数ショット分類を組み合わせたものである。
既存のFSCモデルに対する新しいトレーニング手法を提案する。
説明誘導学習はモデル一般化を効果的に改善することを示す。
論文 参考訳(メタデータ) (2020-07-17T07:28:08Z) - CoSE: Compositional Stroke Embeddings [52.529172734044664]
本稿では、ストロークベースの描画タスクのような複雑な自由形式構造に対する生成モデルを提案する。
我々のアプローチは、自動補完図のようなインタラクティブなユースケースに適している。
論文 参考訳(メタデータ) (2020-06-17T15:22:54Z) - Network Bending: Expressive Manipulation of Deep Generative Models [0.2062593640149624]
ネットワーク曲げと呼ばれる深層生成モデルを操作するための新しいフレームワークを提案する。
生成過程において意味論的に意味のある側面を直接操作できるだけでなく、幅広い表現的な結果を得ることができるかを示す。
論文 参考訳(メタデータ) (2020-05-25T21:48:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。