Depression Symptoms Modelling from Social Media Text: An Active Learning
Approach
- URL: http://arxiv.org/abs/2209.02765v2
- Date: Thu, 8 Sep 2022 04:17:32 GMT
- Title: Depression Symptoms Modelling from Social Media Text: An Active Learning
Approach
- Authors: Nawshad Farruque, Randy Goebel, Sudhakar Sivapalan, Osmar Zaiane
- Abstract summary: We describe an Active Learning framework which uses an initial supervised learning model.
We harvest depression symptoms related samples from our large self-curated Depression Tweets Repository.
We show that we can produce a final dataset which is the largest of its kind.
- Score: 1.513693945164213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fundamental component of user-level social media language based clinical
depression modelling is depression symptoms detection (DSD). Unfortunately,
there does not exist any DSD dataset that reflects both the clinical insights
and the distribution of depression symptoms from the samples of self-disclosed
depressed population. In our work, we describe an Active Learning (AL)
framework which uses an initial supervised learning model that leverages 1) a
state-of-the-art large mental health forum text pre-trained language model
further fine-tuned on a clinician annotated DSD dataset, 2) a Zero-Shot
learning model for DSD, and couples them together to harvest depression
symptoms related samples from our large self-curated Depression Tweets
Repository (DTR). Our clinician annotated dataset is the largest of its kind.
Furthermore, DTR is created from the samples of tweets in self-disclosed
depressed users Twitter timeline from two datasets, including one of the
largest benchmark datasets for user-level depression detection from Twitter.
This further helps preserve the depression symptoms distribution of
self-disclosed Twitter users tweets. Subsequently, we iteratively retrain our
initial DSD model with the harvested data. We discuss the stopping criteria and
limitations of this AL process, and elaborate the underlying constructs which
play a vital role in the overall AL process. We show that we can produce a
final dataset which is the largest of its kind. Furthermore, a DSD and a
Depression Post Detection (DPD) model trained on it achieves significantly
better accuracy than their initial version.
Related papers
- A BERT-Based Summarization approach for depression detection [1.7363112470483526]
Depression is a globally prevalent mental disorder with potentially severe repercussions if not addressed.
Machine learning and artificial intelligence can autonomously detect depression indicators from diverse data sources.
Our study proposes text summarization as a preprocessing technique to diminish the length and intricacies of input texts.
arXiv Detail & Related papers (2024-09-13T02:14:34Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
Personality detection aims to detect one's personality traits underlying in social media posts.
Most existing methods learn post features directly by fine-tuning the pre-trained language models.
We propose a large language model (LLM) based text augmentation enhanced personality detection model.
arXiv Detail & Related papers (2024-03-12T12:10:18Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
We propose a deep architecture for depression detection from social media posts.
We incorporate profanity and morality features of posts and words in our architecture using a late fusion scheme.
The inclusion of the proposed features yields state-of-the-art results in both settings.
arXiv Detail & Related papers (2023-03-24T21:26:27Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings.
We use test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels.
We evaluate our methods on two Reddit-based benchmarks, achieving 30% improvement over state of the art in terms of measuring depression severity.
arXiv Detail & Related papers (2022-11-14T18:47:26Z) - Deep Temporal Modelling of Clinical Depression through Social Media Text [1.513693945164213]
We develop a model to detect user-level clinical depression based on a user's temporal social media posts.
Our model uses a Depression Detection (DSD) classifier, which is trained on the largest existing samples of clinician annotated tweets for clinical depression symptoms.
arXiv Detail & Related papers (2022-10-28T18:31:52Z) - DEPTWEET: A Typology for Social Media Texts to Detect Depression
Severities [0.46796109436086664]
We leverage the clinical articulation of depression to build a typology for social media texts for detecting the severity of depression.
It emulates the standard clinical assessment procedure Diagnostic and Statistical Manual of Mental Disorders (DSM-5) and Patient Health Questionnaire (PHQ-9)
We present a new dataset of 40191 tweets labeled by expert annotators. Each tweet is labeled as 'non-depressed' or 'depressed'
arXiv Detail & Related papers (2022-10-10T08:23:57Z) - Data set creation and empirical analysis for detecting signs of
depression from social media postings [0.0]
Depression is a common mental illness that has to be detected and treated at an early stage to avoid serious consequences.
We developed a gold standard data set that detects the levels of depression as not depressed', moderately depressed' and severely depressed' from the social media postings.
arXiv Detail & Related papers (2022-02-07T10:24:33Z) - Does BERT Pretrained on Clinical Notes Reveal Sensitive Data? [70.3631443249802]
We design a battery of approaches intended to recover Personal Health Information from a trained BERT.
Specifically, we attempt to recover patient names and conditions with which they are associated.
We find that simple probing methods are not able to meaningfully extract sensitive information from BERT trained over the MIMIC-III corpus of EHR.
arXiv Detail & Related papers (2021-04-15T20:40:05Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - A Novel Sentiment Analysis Engine for Preliminary Depression Status
Estimation on Social Media [0.0]
We propose a cloud-based smartphone application, with a deep learning-based backend to primarily perform depression detection on Twitter social media.
A psychologist could leverage the application to assess the patient's depression status prior to counseling, which provides better insight into the mental health status of a patient.
The model achieved pinnacle results, with a testing accuracy of 87.23% and an AUC of 0.8621.
arXiv Detail & Related papers (2020-11-29T04:42:53Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
Dynamic treatment regimes (DTRs) are personalized, adaptive, multi-stage treatment plans that adapt treatment decisions to an individual's initial features and to intermediate outcomes and features at each subsequent stage.
We propose a novel algorithm that, by carefully balancing exploration and exploitation, is guaranteed to achieve rate-optimal regret when the transition and reward models are linear.
arXiv Detail & Related papers (2020-05-06T13:03:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.