SUNet: Scale-aware Unified Network for Panoptic Segmentation
- URL: http://arxiv.org/abs/2209.02877v1
- Date: Wed, 7 Sep 2022 01:40:41 GMT
- Title: SUNet: Scale-aware Unified Network for Panoptic Segmentation
- Authors: Weihao Yan, Yeqiang Qian, Chunxiang Wang, Ming Yang
- Abstract summary: We propose two lightweight modules to mitigate the problem of segmenting objects of various scales.
We present an end-to-end Scale-aware Unified Network (SUNet) which is more adaptable to multi-scale objects.
- Score: 25.626882426111198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Panoptic segmentation combines the advantages of semantic and instance
segmentation, which can provide both pixel-level and instance-level
environmental perception information for intelligent vehicles. However, it is
challenged with segmenting objects of various scales, especially on extremely
large and small ones. In this work, we propose two lightweight modules to
mitigate this problem. First, Pixel-relation Block is designed to model global
context information for large-scale things, which is based on a
query-independent formulation and brings small parameter increments. Then,
Convectional Network is constructed to collect extra high-resolution
information for small-scale stuff, supplying more appropriate semantic features
for the downstream segmentation branches. Based on these two modules, we
present an end-to-end Scale-aware Unified Network (SUNet), which is more
adaptable to multi-scale objects. Extensive experiments on Cityscapes and COCO
demonstrate the effectiveness of the proposed methods.
Related papers
- Enhanced Semantic Segmentation for Large-Scale and Imbalanced Point Clouds [6.253217784798542]
Small-sized objects are prone to be under-sampled or misclassified due to their low occurrence frequency.
We propose the Multilateral Cascading Network (MCNet) for large-scale and sample-imbalanced point cloud scenes.
arXiv Detail & Related papers (2024-09-21T02:23:01Z) - Hi-ResNet: Edge Detail Enhancement for High-Resolution Remote Sensing Segmentation [10.919956120261539]
High-resolution remote sensing (HRS) semantic segmentation extracts key objects from high-resolution coverage areas.
objects of the same category within HRS images show significant differences in scale and shape across diverse geographical environments.
We propose a High-resolution remote sensing network (Hi-ResNet) with efficient network structure designs.
arXiv Detail & Related papers (2023-05-22T03:58:25Z) - De-coupling and De-positioning Dense Self-supervised Learning [65.56679416475943]
Dense Self-Supervised Learning (SSL) methods address the limitations of using image-level feature representations when handling images with multiple objects.
We show that they suffer from coupling and positional bias, which arise from the receptive field increasing with layer depth and zero-padding.
We demonstrate the benefits of our method on COCO and on a new challenging benchmark, OpenImage-MINI, for object classification, semantic segmentation, and object detection.
arXiv Detail & Related papers (2023-03-29T18:07:25Z) - DuAT: Dual-Aggregation Transformer Network for Medical Image
Segmentation [21.717520350930705]
Transformer-based models have been widely demonstrated to be successful in computer vision tasks.
However, they are often dominated by features of large patterns leading to the loss of local details.
We propose a Dual-Aggregation Transformer Network called DuAT, which is characterized by two innovative designs.
Our proposed model outperforms state-of-the-art methods in the segmentation of skin lesion images, and polyps in colonoscopy images.
arXiv Detail & Related papers (2022-12-21T07:54:02Z) - DPANET:Dual Pooling Attention Network for Semantic Segmentation [0.0]
We propose a lightweight and flexible neural network named Dual Pool Attention Network(DPANet)
The first component is spatial pool attention module, we formulate an easy and powerful method densely to extract contextual characteristics.
The second component is channel pool attention module. So, the aim of this module is stripping them out, in order to construct relationship of all channels and heighten different channels semantic information selectively.
arXiv Detail & Related papers (2022-10-11T13:29:33Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
We apply contrastive learning to enhance the discriminative power of the multi-scale features extracted by semantic segmentation networks.
By first mapping the encoder's multi-scale representations to a common feature space, we instantiate a novel form of supervised local-global constraint.
arXiv Detail & Related papers (2022-03-25T01:24:24Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
Aerial imagery segmentation has some unique challenges, the most critical one among which lies in foreground-background imbalance.
We propose Adaptive Focus Framework (AF$), which adopts a hierarchical segmentation procedure and focuses on adaptively utilizing multi-scale representations.
AF$ has significantly improved the accuracy on three widely used aerial benchmarks, as fast as the mainstream method.
arXiv Detail & Related papers (2022-02-18T10:14:45Z) - Semantic Attention and Scale Complementary Network for Instance
Segmentation in Remote Sensing Images [54.08240004593062]
We propose an end-to-end multi-category instance segmentation model, which consists of a Semantic Attention (SEA) module and a Scale Complementary Mask Branch (SCMB)
SEA module contains a simple fully convolutional semantic segmentation branch with extra supervision to strengthen the activation of interest instances on the feature map.
SCMB extends the original single mask branch to trident mask branches and introduces complementary mask supervision at different scales.
arXiv Detail & Related papers (2021-07-25T08:53:59Z) - Enhanced Boundary Learning for Glass-like Object Segmentation [55.45473926510806]
This paper aims to solve the glass-like object segmentation problem via enhanced boundary learning.
In particular, we first propose a novel refined differential module for generating finer boundary cues.
An edge-aware point-based graph convolution network module is proposed to model the global shape representation along the boundary.
arXiv Detail & Related papers (2021-03-29T16:18:57Z) - Improving Semantic Segmentation via Decoupled Body and Edge Supervision [89.57847958016981]
Existing semantic segmentation approaches either aim to improve the object's inner consistency by modeling the global context, or refine objects detail along their boundaries by multi-scale feature fusion.
In this paper, a new paradigm for semantic segmentation is proposed.
Our insight is that appealing performance of semantic segmentation requires textitexplicitly modeling the object textitbody and textitedge, which correspond to the high and low frequency of the image.
We show that the proposed framework with various baselines or backbone networks leads to better object inner consistency and object boundaries.
arXiv Detail & Related papers (2020-07-20T12:11:22Z) - Crowd Counting via Hierarchical Scale Recalibration Network [61.09833400167511]
We propose a novel Hierarchical Scale Recalibration Network (HSRNet) to tackle the task of crowd counting.
HSRNet models rich contextual dependencies and recalibrating multiple scale-associated information.
Our approach can ignore various noises selectively and focus on appropriate crowd scales automatically.
arXiv Detail & Related papers (2020-03-07T10:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.