DPANET:Dual Pooling Attention Network for Semantic Segmentation
- URL: http://arxiv.org/abs/2210.05437v1
- Date: Tue, 11 Oct 2022 13:29:33 GMT
- Title: DPANET:Dual Pooling Attention Network for Semantic Segmentation
- Authors: Dongwei Sun, Zhuolin Gao
- Abstract summary: We propose a lightweight and flexible neural network named Dual Pool Attention Network(DPANet)
The first component is spatial pool attention module, we formulate an easy and powerful method densely to extract contextual characteristics.
The second component is channel pool attention module. So, the aim of this module is stripping them out, in order to construct relationship of all channels and heighten different channels semantic information selectively.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image segmentation is a historic and significant computer vision task. With
the help of deep learning techniques, image semantic segmentation has made
great progresses. Over recent years, based on guidance of attention mechanism
compared with CNN which overcomes the problems of lacking of interaction
between different channels, and effective capturing and aggregating contextual
information. However, the massive operations generated by the attention
mechanism lead to its extremely high complexity and high demand for GPU memory.
For this purpose, we propose a lightweight and flexible neural network named
Dual Pool Attention Network(DPANet). The most important is that all modules in
DPANet generate \textbf{0} parameters. The first component is spatial pool
attention module, we formulate an easy and powerful method densely to extract
contextual characteristics and reduce the amount of calculation and complexity
dramatically.Meanwhile, it demonstrates the power of even and large kernel
size. The second component is channel pool attention module. It is known that
the computation process of CNN incorporates the information of spatial and
channel dimensions. So, the aim of this module is stripping them out, in order
to construct relationship of all channels and heighten different channels
semantic information selectively. Moreover, we experiments on segmentation
datasets, which shows our method simple and effective with low parameters and
calculation complexity.
Related papers
- Spatial-information Guided Adaptive Context-aware Network for Efficient
RGB-D Semantic Segmentation [9.198120596225968]
We propose an efficient lightweight encoder-decoder network that reduces the computational parameters and guarantees the robustness of the algorithm.
Experimental results on NYUv2, SUN RGB-D, and Cityscapes datasets show that our method achieves a better trade-off among segmentation accuracy, inference time, and parameters than the state-of-the-art methods.
arXiv Detail & Related papers (2023-08-11T09:02:03Z) - SegNetr: Rethinking the local-global interactions and skip connections
in U-shaped networks [1.121518046252855]
U-shaped networks have dominated the field of medical image segmentation due to their simple and easily tuned structure.
We introduce a novel SegNetr block that can perform local-global interactions dynamically at any stage and with only linear complexity.
We validate the effectiveness of SegNetr on four mainstream medical image segmentation datasets, with 59% and 76% fewer parameters and GFLOPs than vanilla U-Net.
arXiv Detail & Related papers (2023-07-06T12:39:06Z) - Cross-CBAM: A Lightweight network for Scene Segmentation [2.064612766965483]
We present the Cross-CBAM network, a novel lightweight network for real-time semantic segmentation.
In experiments on the Cityscapes dataset and Camvid dataset, we achieve 73.4% mIoU with a speed of 240.9FPS and 77.2% mIoU with a speed of 88.6FPS on NVIDIA GTX 1080Ti.
arXiv Detail & Related papers (2023-06-04T09:03:05Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Group Fisher Pruning for Practical Network Compression [58.25776612812883]
We present a general channel pruning approach that can be applied to various complicated structures.
We derive a unified metric based on Fisher information to evaluate the importance of a single channel and coupled channels.
Our method can be used to prune any structures including those with coupled channels.
arXiv Detail & Related papers (2021-08-02T08:21:44Z) - DMSANet: Dual Multi Scale Attention Network [0.0]
We propose a new attention module that not only achieves the best performance but also has lesser parameters compared to most existing models.
Our attention module can easily be integrated with other convolutional neural networks because of its lightweight nature.
arXiv Detail & Related papers (2021-06-13T10:31:31Z) - An Attention-Fused Network for Semantic Segmentation of
Very-High-Resolution Remote Sensing Imagery [26.362854938949923]
We propose a novel convolutional neural network architecture, named attention-fused network (AFNet)
We achieve state-of-the-art performance with an overall accuracy of 91.7% and a mean F1 score of 90.96% on the ISPRS Vaihingen 2D dataset and the ISPRS Potsdam 2D dataset.
arXiv Detail & Related papers (2021-05-10T06:23:27Z) - Boundary-Aware Segmentation Network for Mobile and Web Applications [60.815545591314915]
Boundary-Aware Network (BASNet) is integrated with a predict-refine architecture and a hybrid loss for highly accurate image segmentation.
BASNet runs at over 70 fps on a single GPU which benefits many potential real applications.
Based on BASNet, we further developed two (close to) commercial applications: AR COPY & PASTE, in which BASNet is augmented reality for "COPY" and "PASTING" real-world objects, and OBJECT CUT, which is a web-based tool for automatic object background removal.
arXiv Detail & Related papers (2021-01-12T19:20:26Z) - Local Memory Attention for Fast Video Semantic Segmentation [157.7618884769969]
We propose a novel neural network module that transforms an existing single-frame semantic segmentation model into a video semantic segmentation pipeline.
Our approach aggregates a rich representation of the semantic information in past frames into a memory module.
We observe an improvement in segmentation performance on Cityscapes by 1.7% and 2.1% in mIoU respectively, while increasing inference time of ERFNet by only 1.5ms.
arXiv Detail & Related papers (2021-01-05T18:57:09Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
We propose a novel framework called Squeeze Reasoning.
Instead of propagating information on the spatial map, we first learn to squeeze the input feature into a channel-wise global vector.
We show that our approach can be modularized as an end-to-end trained block and can be easily plugged into existing networks.
arXiv Detail & Related papers (2020-11-06T12:17:01Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
We propose a real-time high-performance DCNN-based method for robust semantic segmentation of urban street scenes.
The proposed method achieves the accuracy of 73.6% and 68.0% mean Intersection over Union (mIoU) with the inference speed of 51.0 fps and 39.3 fps.
arXiv Detail & Related papers (2020-03-11T08:45:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.