Magnitude-image based data-consistent deep learning method for MRI super
resolution
- URL: http://arxiv.org/abs/2209.02901v1
- Date: Wed, 7 Sep 2022 03:16:35 GMT
- Title: Magnitude-image based data-consistent deep learning method for MRI super
resolution
- Authors: Ziyan Lin, Zihao Chen
- Abstract summary: Deep learning MRI super resolution methods can reduce scan time without complicated sequence programming.
Data consistency layer can improve the deep learning results but needs raw k-space data.
Our experiments show that the proposed method can improve NRMSE and SSIM of super resolution images.
- Score: 3.5027291542274357
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Magnetic Resonance Imaging (MRI) is important in clinic to produce high
resolution images for diagnosis, but its acquisition time is long for high
resolution images. Deep learning based MRI super resolution methods can reduce
scan time without complicated sequence programming, but may create additional
artifacts due to the discrepancy between training data and testing data. Data
consistency layer can improve the deep learning results but needs raw k-space
data. In this work, we propose a magnitude-image based data consistency deep
learning MRI super resolution method to improve super resolution images'
quality without raw k-space data. Our experiments show that the proposed method
can improve NRMSE and SSIM of super resolution images compared to the same
Convolutional Neural Network (CNN) block without data consistency module.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Resolution- and Stimulus-agnostic Super-Resolution of Ultra-High-Field Functional MRI: Application to Visual Studies [1.8327547104097965]
High-resolution fMRI provides a window into the brain's mesoscale organization.
Yet, higher spatial resolution increases scan times, to compensate for the low signal and contrast-to-noise ratio.
This work introduces a deep learning-based 3D super-resolution (SR) method for fMRI.
arXiv Detail & Related papers (2023-11-25T03:33:36Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Iterative Data Refinement for Self-Supervised MR Image Reconstruction [18.02961646651716]
We propose a data refinement framework for self-supervised MR image reconstruction.
We first analyze the reason of the performance gap between self-supervised and supervised methods.
Then, we design an effective self-supervised training data refinement method to reduce this data bias.
arXiv Detail & Related papers (2022-11-24T06:57:16Z) - STRESS: Super-Resolution for Dynamic Fetal MRI using Self-Supervised
Learning [2.5581619987137048]
We propose STRESS, a self-supervised super-resolution framework for dynamic fetal MRI with interleaved slice acquisitions.
Our proposed method simulates an interleaved slice acquisition along the high-resolution axis on the originally acquired data to generate pairs of low- and high-resolution images.
Evaluations on both simulated and in utero data show that our proposed method outperforms other self-supervised super-resolution methods.
arXiv Detail & Related papers (2021-06-23T13:52:11Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
Deep learning methods have been shown to produce superior performance on MR image reconstruction.
These methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations.
We propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy.
arXiv Detail & Related papers (2021-03-03T03:04:40Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
We propose a deep-learning approach, aiming at reconstructing high-quality images from accelerated MRI acquisition.
Specifically, we use Convolutional Neural Network (CNN) to learn the differences between the aliased images and the original images.
Considering the peculiarity of the down-sampled k-space data, we introduce a new term to the loss function in learning, which effectively employs the given k-space data.
arXiv Detail & Related papers (2020-01-13T19:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.