論文の概要: Semi-supervised Crowd Counting via Density Agency
- arxiv url: http://arxiv.org/abs/2209.02955v1
- Date: Wed, 7 Sep 2022 06:34:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-08 12:38:20.274103
- Title: Semi-supervised Crowd Counting via Density Agency
- Title(参考訳): 密度機関による半監督群集計数
- Authors: Hui Lin and Zhiheng Ma and Xiaopeng Hong and Yaowei Wang and Zhou Su
- Abstract要約: 我々は、学習可能な補助構造、すなわち密度エージェンシーを構築し、認識された前景の地域特徴を対応する密度サブクラスに近づける。
第2に,バックボーン特徴抽出器を統合するために,密度誘導型コントラスト学習損失を提案する。
第3に,前景の機能を改良するためにトランス構造を用いて回帰ヘッドを構築する。
- 参考スコア(独自算出の注目度): 57.3635501421658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a new agency-guided semi-supervised counting
approach. First, we build a learnable auxiliary structure, namely the density
agency to bring the recognized foreground regional features close to
corresponding density sub-classes (agents) and push away background ones.
Second, we propose a density-guided contrastive learning loss to consolidate
the backbone feature extractor. Third, we build a regression head by using a
transformer structure to refine the foreground features further. Finally, an
efficient noise depression loss is provided to minimize the negative influence
of annotation noises. Extensive experiments on four challenging crowd counting
datasets demonstrate that our method achieves superior performance to the
state-of-the-art semi-supervised counting methods by a large margin. Code is
available.
- Abstract(参考訳): 本稿では,新たなエージェント誘導型半教師付きカウント手法を提案する。
まず,学習可能な補助構造,すなわち,認識された前景の地域的特徴を対応する密度サブクラス(agents)に近づけ,背景情報を押し出すための密度エージェンシーを構築する。
第2に,backbone特徴抽出器を統合するために,密度誘導型コントラスト学習損失を提案する。
第3に,前景の機能を改良するためにトランス構造を用いて回帰ヘッドを構築する。
最後に、アノテーションノイズの負の影響を最小限に抑えるために、効率的なノイズ抑制損失を提供する。
4つの挑戦的群集計数データセットに対する大規模な実験により,本手法は最先端の半監督的計数手法よりも高い性能を得られた。
コードは利用可能。
関連論文リスト
- Anti-Collapse Loss for Deep Metric Learning Based on Coding Rate Metric [99.19559537966538]
DMLは、分類、クラスタリング、検索といった下流タスクのための識別可能な高次元埋め込み空間を学習することを目的としている。
埋め込み空間の構造を維持し,特徴の崩壊を避けるために,反崩壊損失と呼ばれる新しい損失関数を提案する。
ベンチマークデータセットの総合実験により,提案手法が既存の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-07-03T13:44:20Z) - Towards the Uncharted: Density-Descending Feature Perturbation for Semi-supervised Semantic Segmentation [51.66997548477913]
本稿では,DDFP(Dedentity-Descending Feature Perturbation)という特徴レベルの一貫性学習フレームワークを提案する。
半教師付き学習における低密度分離仮定にインスパイアされた私たちの重要な洞察は、特徴密度はセグメンテーション分類器が探索する最も有望な方向の光を放つことができるということである。
提案したDFFPは、機能レベルの摂動に関する他の設計よりも優れており、Pascal VOCとCityscapesのデータセット上でのアートパフォーマンスの状態を示している。
論文 参考訳(メタデータ) (2024-03-11T06:59:05Z) - HDNet: A Hierarchically Decoupled Network for Crowd Counting [11.530565995318696]
本稿では,階層型分離ネットワーク(HDNet)を提案する。
HDNetは、いくつかの人気のあるカウントベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-12-12T06:01:26Z) - Cascaded Residual Density Network for Crowd Counting [63.714719914701014]
本研究では, 群衆数に対する高品質な密度マップを高精度に作成するために, 粗大なアプローチで新しいカスケード残差密度ネットワーク(CRDNet)を提案する。
新たな局所的カウント損失が示され、群衆カウントの精度が向上する。
論文 参考訳(メタデータ) (2021-07-29T03:07:11Z) - Coarse- and Fine-grained Attention Network with Background-aware Loss
for Crowd Density Map Estimation [2.690502103971799]
CFANetは、高品質な群衆密度マップを生成する新しい方法であり、人を数える。
集合領域認識器 (CRR) と密度レベル推定器 (DLE) を結合して, 粗大から細大に進行する注意機構を考案する。
提案手法は,従来の最先端手法をカウント精度で上回るだけでなく,密度マップの画質の向上や,誤認識率の低減にも寄与する。
論文 参考訳(メタデータ) (2020-11-07T08:05:54Z) - Semi-Supervised Crowd Counting via Self-Training on Surrogate Tasks [50.78037828213118]
本稿では,機能学習の観点から,半教師付き群集カウント問題に取り組む。
本稿では,2つの革新的なコンポーネント上に構築された,新しい半教師付き群集カウント手法を提案する。
論文 参考訳(メタデータ) (2020-07-07T05:30:53Z) - Non-Local Part-Aware Point Cloud Denoising [55.50360085086123]
本稿では,点群を識別する非局所部分認識ディープニューラルネットワークを提案する。
グラフアテンションモジュールでカスタマイズした非局所学習ユニット(NLU)を設計し、非局所意味論的特徴を適応的にキャプチャする。
雑音発生性能を向上させるため,ノイズ特性をノイズ入力から段階的に抽出するために,一連のNLUをカスケードする。
論文 参考訳(メタデータ) (2020-03-14T13:51:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。