Optimizing Entanglement in Nanomechanical Resonators through Quantum Squeezing and Parametric Amplification
- URL: http://arxiv.org/abs/2410.15345v3
- Date: Tue, 19 Nov 2024 03:51:55 GMT
- Title: Optimizing Entanglement in Nanomechanical Resonators through Quantum Squeezing and Parametric Amplification
- Authors: Muhdin Abdo Wodedo, Tesfay Gebremariam Tesfahannes, Tewodros Yirgashewa Darge, Berihu Teklu,
- Abstract summary: We propose a scheme that optimize entanglement in nanomechanical resonators through quantum state transfer of squeezed fields assisted by radiation pressure.
The system is driven by red-detuned laser fields, which enable simultaneous cooling of the mechanical resonators.
- Score: 0.0
- License:
- Abstract: We propose a scheme that optimizes entanglement in nanomechanical resonators through quantum state transfer of squeezed fields assisted by radiation pressure. The system is driven by red-detuned laser fields, which enable simultaneous cooling of the mechanical resonators while facilitating the transfer of quantum states in a weak coupling, sideband-resolved regime. The mechanical entanglement is quantified using logarithmic negativity within the bipartite Gaussian states of the two mechanical modes. Our results show that the degree of mechanical entanglement is strongly influenced by several key parameters, including the parametric phase and nonlinear gain of the non-degenerate OPA, the squeezing strength of the injected squeezed vacuum reservoir, optomechanical cooperativity (controlled by laser drive power), and the mechanical bath temperature (phonon thermal excitation). Additionally, our results indicate that careful tuning of these parameters can enhance entanglement robustness, suggesting that this optomechanical scheme holds promise for applications in quantum sensing and information processing.
Related papers
- Bipartite and tripartite entanglement in an optomechanical ring cavity [0.0]
Entanglement serves as a core resource for quantum information technologies.
This study gives a unifying description of the stationary bipartite and tripartite entanglement in a coupled optomechanical ring cavity.
arXiv Detail & Related papers (2024-11-07T21:30:44Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Suppression of quantum dissipation: A cooperative effect of quantum squeezing and quantum measurement [22.051290654737976]
We propose a scheme for beating environment-induced dissipation in an open two-level system coupled to a parametrically driven cavity.
We demonstrate that, in the presence of the cooperation, the system dynamics can be completely dominated by the effective system-cavity interaction.
This work provides a generic method of dissipation suppression in a variety of quantum mechanical platforms, including natural atoms and superconducting circuits.
arXiv Detail & Related papers (2024-07-12T15:10:44Z) - Strong coupling at room temperature with a centimeter-scale quartz crystal [0.0]
We report an optomechanical system with independent control over pumping power and frequency detuning to achieve and characterize the strong-coupling regime of a bulk acoustic-wave resonator.
Our results provide valuable insights into the performances of room-temperature macroscopic mechanical systems and their applications in hybrid quantum devices.
arXiv Detail & Related papers (2024-05-28T12:15:05Z) - In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Tripartite quantum entanglement with squeezed optomechanics [3.1938039621723724]
We propose how to achieve coherent manipulation and enhancement of quantum entanglement in a hybrid optomechanical system.
The advantages of this system are twofold: (i) one can effectively regulate the light-mirror interactions by introducing a squeezed intracavity mode via the OPA; (ii) when properly matching the squeezing parameters between the squeezed cavity mode and the injected squeezed vacuum reservoir, the optical input noises can be suppressed completely.
arXiv Detail & Related papers (2023-11-20T02:00:17Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Strong mechanical squeezing in a microcavity with double quantum wells [0.0]
In a hybrid quantum system composed of two quantum wells placed inside a cavity with a moving end mirror pumped by bichromatic coherent light, we address the formation of squeezed states of a mechanical resonator.
We show that the robustness of this squeezing against thermal fluctuations is important for practical applications of such systems.
arXiv Detail & Related papers (2023-02-01T16:00:55Z) - Impurity reveals distinct operational phases in quantum thermodynamic
cycles [23.09629129922603]
impurity unlocks new operational phases in the system, such as a quantum heat engine, quantum refrigerator, and quantum cold pump.
The cooling power and coefficient of performance of the quantum refrigerator and quantum cold pump are non-trivially affected by the impurity.
arXiv Detail & Related papers (2022-07-06T13:01:06Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Stroboscopic quantum optomechanics [0.0]
We show that ground-state cooling and mechanical squeezing can be achieved, even in the presence of mechanical dissipation.
We provide a full quantum-mechanical treatment of stroboscopic backaction-evading measurements.
arXiv Detail & Related papers (2020-03-09T19:00:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.