論文の概要: Treating Motion as Option to Reduce Motion Dependency in Unsupervised
Video Object Segmentation
- arxiv url: http://arxiv.org/abs/2209.03138v1
- Date: Sun, 4 Sep 2022 18:05:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-08 12:43:32.915865
- Title: Treating Motion as Option to Reduce Motion Dependency in Unsupervised
Video Object Segmentation
- Title(参考訳): 教師なし映像オブジェクトセグメンテーションにおける動き依存性低減のための運動処理
- Authors: Suhwan Cho, Minhyeok Lee, Seunghoon Lee, Chaewon Park, Donghyeong Kim,
Sangyoun Lee
- Abstract要約: 教師なしビデオオブジェクトセグメンテーション(VOS)は、画素レベルでの動画シーケンスにおいて最も顕著なオブジェクトを検出することを目的としている。
最先端のほとんどの手法では、光学フローマップから得られる動きの手がかりと外観の手がかりを活用して、背景に比べて顕著な物体が典型的に特徴的な動きを持つという特性を利用する。
- 参考スコア(独自算出の注目度): 5.231219025536678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised video object segmentation (VOS) aims to detect the most salient
object in a video sequence at the pixel level. In unsupervised VOS, most
state-of-the-art methods leverage motion cues obtained from optical flow maps
in addition to appearance cues to exploit the property that salient objects
usually have distinctive movements compared to the background. However, as they
are overly dependent on motion cues, which may be unreliable in some cases,
they cannot achieve stable prediction. To reduce this motion dependency of
existing two-stream VOS methods, we propose a novel motion-as-option network
that optionally utilizes motion cues. Additionally, to fully exploit the
property of the proposed network that motion is not always required, we
introduce a collaborative network learning strategy. On all the public
benchmark datasets, our proposed network affords state-of-the-art performance
with real-time inference speed.
- Abstract(参考訳): 教師なしビデオオブジェクトセグメンテーション(VOS)は、画素レベルでの動画シーケンスにおいて最も顕著なオブジェクトを検出することを目的としている。
教師なしのVOSでは、ほとんどの最先端の手法は、光学フローマップから得られる動きの手がかりと外観の手がかりを利用して、通常、背景に比べて顕著な動きを持つという特性を利用する。
しかし、それらは動きの手がかりに過度に依存しており、信頼性に欠ける場合もあるため、安定した予測はできない。
既存の2ストリームVOS方式の動作依存性を低減するため,動作キューを任意に利用する新しい動作・アズ・オプション・ネットワークを提案する。
また,動きが必ずしも必要ではないネットワークの特性を十分に活用するために,協調的なネットワーク学習戦略を導入する。
すべての公開ベンチマークデータセットにおいて,提案するネットワークは,リアルタイムな推論速度で最先端のパフォーマンスを実現する。
関連論文リスト
- Traffic Video Object Detection using Motion Prior [16.63738085066699]
本稿では,先行動作を利用した2つの革新的な手法を提案し,トラヒックビデオオブジェクト検出の性能を向上する。
まず、時間情報統合を導く前に動きを利用する新しい自己認識モジュールを導入する。
次に、擬似ラベリング機構を用いて、半教師付き設定のためのノイズの多い擬似ラベルを除去する。
論文 参考訳(メタデータ) (2023-11-16T18:59:46Z) - Treating Motion as Option with Output Selection for Unsupervised Video
Object Segmentation [17.71871884366252]
ビデオオブジェクトセグメンテーション(VOS)は、オブジェクトに関する外部のガイダンスなしで、ビデオ内の最も健全なオブジェクトを検出することを目的としている。
近年,光学フローマップから抽出した動きキューとRGB画像から抽出した外観キューを協調的に利用する手法が提案されている。
本稿では,動作キューを任意に扱うことで,新たな動作・アズ・オプション・ネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-26T09:34:13Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
本研究では,学習可能なモーション予測器を中心に,新しいモーショントラッカーであるMotionTrackを紹介する。
実験結果から、MotionTrackはDancetrackやSportsMOTといったデータセット上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-06-05T04:24:11Z) - InstMove: Instance Motion for Object-centric Video Segmentation [70.16915119724757]
本研究では,オブジェクト中心ビデオのインスタンス・モーションを表すInstMoveとインスタンス・レベル・モーションについて検討する。
InstMoveは主に画像特徴の埋め込みのないインスタンスレベルのモーション情報に依存している。
数行のコードだけで、InstMoveは3つの異なるビデオセグメンテーションタスクのために、現在のSOTAメソッドに統合できる。
論文 参考訳(メタデータ) (2023-03-14T17:58:44Z) - Unsupervised Multi-object Segmentation by Predicting Probable Motion
Patterns [92.80981308407098]
手動による監督なしに複数の画像オブジェクトを分割する手法を提案する。
この方法は静止画像からオブジェクトを抽出するが、監視のためにビデオを使用する。
シミュレーションおよび実世界のベンチマークで、最先端の教師なしオブジェクトセグメンテーション性能を示す。
論文 参考訳(メタデータ) (2022-10-21T17:57:05Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
本稿では,新しいビデオカモフラージュオブジェクト検出(VCOD)フレームワークを提案する。
短期的および長期的整合性を利用して、ビデオフレームからカモフラージュされたオブジェクトを検出する。
論文 参考訳(メタデータ) (2022-03-14T17:55:41Z) - Deep Motion Prior for Weakly-Supervised Temporal Action Localization [35.25323276744999]
Weakly-Supervised Temporal Action Localization (WSTAL) は、ビデオレベルのラベルだけで、未トリミングビデオ内のアクションをローカライズすることを目的としている。
現在、最先端のWSTALメソッドのほとんどは、Multi-Instance Learning (MIL)パイプラインに従っています。
既存の手法では,1)動作情報の不十分な使用,2)広汎なクロスエントロピートレーニング損失の相容れない2つの重要な欠点が指摘されている。
論文 参考訳(メタデータ) (2021-08-12T08:51:36Z) - Full-Duplex Strategy for Video Object Segmentation [141.43983376262815]
Full- Strategy Network (FSNet)はビデオオブジェクトセグメンテーション(VOS)のための新しいフレームワークである
我々のFSNetは、融合復号ステージの前に、クロスモーダルな機能パス(すなわち、送信と受信)を同時に実行します。
我々のFSNetは、VOSとビデオの有能なオブジェクト検出タスクの両方において、他の最先端技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-06T14:50:50Z) - Motion-Attentive Transition for Zero-Shot Video Object Segmentation [99.44383412488703]
ゼロショットオブジェクトセグメンテーションのためのモーション・アテンタティブ・トランジション・ネットワーク(MATNet)を提案する。
モーション・アテンティブ・トランジション (MAT) と呼ばれる非対称のアテンションブロックは、2ストリームエンコーダ内に設計されている。
このように、エンコーダは深く相互に作用し、物体の動きと外観の間の密な階層的な相互作用を可能にする。
論文 参考訳(メタデータ) (2020-03-09T16:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。