A New Heterogeneous Graph Representation in a Social Media Platform:
Steemit
- URL: http://arxiv.org/abs/2209.03144v1
- Date: Fri, 2 Sep 2022 04:59:21 GMT
- Title: A New Heterogeneous Graph Representation in a Social Media Platform:
Steemit
- Authors: Negar Maleki, Balaji Padamanabhan, Kaushik Dutta
- Abstract summary: We present a new heterogeneous graph representation including time in every single component of the graph.
We also introduce four time-dependent queries to address machine learning or deep learning problems.
- Score: 2.127049691404299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, temporal graphs have substituted dynamic graphs as many real-world
problems evolve in continuous time rather than in discrete time, and besides
time almost all problems are designed in a heterogeneous format rather than a
homogeneous one. However, most existing graph representations do not consider
time in their components. To this end, in this paper, we present a new
heterogeneous graph representation including time in every single component of
the graph, i.e., nodes and edges. We also introduce four time-dependent queries
to address machine learning or deep learning problems. Our findings reveal that
considering the size of the enormous graphs, our time-dependent queries execute
efficiently. In order to show the expressive power of time in graph
representation, we construct a graph for a new social media platform (Steemit),
and address a DL prediction task using graph neural networks (GNNs). Predicting
the payout for a newly published post is one of the most fascinating
classification problems in the Steemit setting, and we address this problem
with two approaches followed by GNN models.
Related papers
- Learning on Large Graphs using Intersecting Communities [13.053266613831447]
MPNNs iteratively update each node's representation in an input graph by aggregating messages from the node's neighbors.
MPNNs might quickly become prohibitive for large graphs provided they are not very sparse.
We propose approximating the input graph as an intersecting community graph (ICG) -- a combination of intersecting cliques.
arXiv Detail & Related papers (2024-05-31T09:26:26Z) - HeteroMILE: a Multi-Level Graph Representation Learning Framework for Heterogeneous Graphs [13.01983932286923]
We propose a Multi-Level Embedding framework of nodes on a heterogeneous graph (HeteroMILE)
HeteroMILE repeatedly coarsens the large sized graph into a smaller size while preserving the backbone structure of the graph before embedding it.
It then refines the coarsened embedding to the original graph using a heterogeneous graph convolution neural network.
arXiv Detail & Related papers (2024-03-31T22:22:10Z) - Overcoming Order in Autoregressive Graph Generation [12.351817671944515]
Graph generation is a fundamental problem in various domains, including chemistry and social networks.
Recent work has shown that molecular graph generation using recurrent neural networks (RNNs) is advantageous compared to traditional generative approaches.
arXiv Detail & Related papers (2024-02-04T09:58:22Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Semi-Supervised Hierarchical Graph Classification [54.25165160435073]
We study the node classification problem in the hierarchical graph where a 'node' is a graph instance.
We propose the Hierarchical Graph Mutual Information (HGMI) and present a way to compute HGMI with theoretical guarantee.
We demonstrate the effectiveness of this hierarchical graph modeling and the proposed SEAL-CI method on text and social network data.
arXiv Detail & Related papers (2022-06-11T04:05:29Z) - Instant Graph Neural Networks for Dynamic Graphs [18.916632816065935]
We propose Instant Graph Neural Network (InstantGNN), an incremental approach for the graph representation matrix of dynamic graphs.
Our method avoids time-consuming, repetitive computations and allows instant updates on the representation and instant predictions.
Our model achieves state-of-the-art accuracy while having orders-of-magnitude higher efficiency than existing methods.
arXiv Detail & Related papers (2022-06-03T03:27:42Z) - Graph Neural Networks Designed for Different Graph Types: A Survey [0.0]
Graph Neural Networks (GNNs) address cutting-edge problems based on graph data.
It has not yet been gathered which GNN can process what kind of graph types.
We give a detailed overview of already existing GNNs and categorize them according to their ability to handle different graph types.
arXiv Detail & Related papers (2022-04-06T20:37:42Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.