Improving Out-of-Distribution Detection via Epistemic Uncertainty
Adversarial Training
- URL: http://arxiv.org/abs/2209.03148v1
- Date: Mon, 5 Sep 2022 14:32:19 GMT
- Title: Improving Out-of-Distribution Detection via Epistemic Uncertainty
Adversarial Training
- Authors: Derek Everett, Andre T. Nguyen, Luke E. Richards, Edward Raff
- Abstract summary: We develop a simple adversarial training scheme that incorporates an attack of the uncertainty predicted by the dropout ensemble.
We demonstrate this method improves OOD detection performance on standard data (i.e., not adversarially crafted), and improves the standardized partial AUC from near-random guessing performance to $geq 0.75$.
- Score: 29.4569172720654
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The quantification of uncertainty is important for the adoption of machine
learning, especially to reject out-of-distribution (OOD) data back to human
experts for review. Yet progress has been slow, as a balance must be struck
between computational efficiency and the quality of uncertainty estimates. For
this reason many use deep ensembles of neural networks or Monte Carlo dropout
for reasonable uncertainty estimates at relatively minimal compute and memory.
Surprisingly, when we focus on the real-world applicable constraint of $\leq
1\%$ false positive rate (FPR), prior methods fail to reliably detect OOD
samples as such. Notably, even Gaussian random noise fails to trigger these
popular OOD techniques. We help to alleviate this problem by devising a simple
adversarial training scheme that incorporates an attack of the epistemic
uncertainty predicted by the dropout ensemble. We demonstrate this method
improves OOD detection performance on standard data (i.e., not adversarially
crafted), and improves the standardized partial AUC from near-random guessing
performance to $\geq 0.75$.
Related papers
- Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
We find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors.
We propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance.
arXiv Detail & Related papers (2024-03-05T11:44:14Z) - Adaptive Uncertainty Estimation via High-Dimensional Testing on Latent
Representations [28.875819909902244]
Uncertainty estimation aims to evaluate the confidence of a trained deep neural network.
Existing uncertainty estimation approaches rely on low-dimensional distributional assumptions.
We propose a new framework using data-adaptive high-dimensional hypothesis testing for uncertainty estimation.
arXiv Detail & Related papers (2023-10-25T12:22:18Z) - Conservative Prediction via Data-Driven Confidence Minimization [70.93946578046003]
In safety-critical applications of machine learning, it is often desirable for a model to be conservative.
We propose the Data-Driven Confidence Minimization framework, which minimizes confidence on an uncertainty dataset.
arXiv Detail & Related papers (2023-06-08T07:05:36Z) - Uncertainty-Estimation with Normalized Logits for Out-of-Distribution
Detection [35.539218522504605]
Uncertainty-Estimation with Normalized Logits (UE-NL) is a robust learning method for OOD detection.
UE-NL treats every ID sample equally by predicting the uncertainty score of input data.
It is more robust to noisy ID data that may be misjudged as OOD data by other methods.
arXiv Detail & Related papers (2023-02-15T11:57:09Z) - Free Lunch for Generating Effective Outlier Supervision [46.37464572099351]
We propose an ultra-effective method to generate near-realistic outlier supervision.
Our proposed textttBayesAug significantly reduces the false positive rate over 12.50% compared with the previous schemes.
arXiv Detail & Related papers (2023-01-17T01:46:45Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
Deep neural networks are known to produce highly overconfident predictions on out-of-distribution (OOD) data.
In this paper we propose a novel method where from first principles we combine a certifiable OOD detector with a standard classifier into an OOD aware classifier.
In this way we achieve the best of two worlds: certifiably adversarially robust OOD detection, even for OOD samples close to the in-distribution, without loss in prediction accuracy and close to state-of-the-art OOD detection performance for non-manipulated OOD data.
arXiv Detail & Related papers (2021-06-08T11:40:49Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z) - Certifiably Adversarially Robust Detection of Out-of-Distribution Data [111.67388500330273]
We aim for certifiable worst case guarantees for OOD detection by enforcing low confidence at the OOD point.
We show that non-trivial bounds on the confidence for OOD data generalizing beyond the OOD dataset seen at training time are possible.
arXiv Detail & Related papers (2020-07-16T17:16:47Z) - Revisiting One-vs-All Classifiers for Predictive Uncertainty and
Out-of-Distribution Detection in Neural Networks [22.34227625637843]
We investigate how the parametrization of the probabilities in discriminative classifiers affects the uncertainty estimates.
We show that one-vs-all formulations can improve calibration on image classification tasks.
arXiv Detail & Related papers (2020-07-10T01:55:02Z) - Uncertainty-Based Out-of-Distribution Classification in Deep
Reinforcement Learning [17.10036674236381]
Wrong predictions for out-of-distribution data can cause safety critical situations in machine learning systems.
We propose a framework for uncertainty-based OOD classification: UBOOD.
We show that UBOOD produces reliable classification results when combined with ensemble-based estimators.
arXiv Detail & Related papers (2019-12-31T09:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.