Revisiting One-vs-All Classifiers for Predictive Uncertainty and
Out-of-Distribution Detection in Neural Networks
- URL: http://arxiv.org/abs/2007.05134v1
- Date: Fri, 10 Jul 2020 01:55:02 GMT
- Title: Revisiting One-vs-All Classifiers for Predictive Uncertainty and
Out-of-Distribution Detection in Neural Networks
- Authors: Shreyas Padhy, Zachary Nado, Jie Ren, Jeremiah Liu, Jasper Snoek,
Balaji Lakshminarayanan
- Abstract summary: We investigate how the parametrization of the probabilities in discriminative classifiers affects the uncertainty estimates.
We show that one-vs-all formulations can improve calibration on image classification tasks.
- Score: 22.34227625637843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate estimation of predictive uncertainty in modern neural networks is
critical to achieve well calibrated predictions and detect out-of-distribution
(OOD) inputs. The most promising approaches have been predominantly focused on
improving model uncertainty (e.g. deep ensembles and Bayesian neural networks)
and post-processing techniques for OOD detection (e.g. ODIN and Mahalanobis
distance). However, there has been relatively little investigation into how the
parametrization of the probabilities in discriminative classifiers affects the
uncertainty estimates, and the dominant method, softmax cross-entropy, results
in misleadingly high confidences on OOD data and under covariate shift. We
investigate alternative ways of formulating probabilities using (1) a
one-vs-all formulation to capture the notion of "none of the above", and (2) a
distance-based logit representation to encode uncertainty as a function of
distance to the training manifold. We show that one-vs-all formulations can
improve calibration on image classification tasks, while matching the
predictive performance of softmax without incurring any additional training or
test-time complexity.
Related papers
- Adaptive Uncertainty Estimation via High-Dimensional Testing on Latent
Representations [28.875819909902244]
Uncertainty estimation aims to evaluate the confidence of a trained deep neural network.
Existing uncertainty estimation approaches rely on low-dimensional distributional assumptions.
We propose a new framework using data-adaptive high-dimensional hypothesis testing for uncertainty estimation.
arXiv Detail & Related papers (2023-10-25T12:22:18Z) - On double-descent in uncertainty quantification in overparametrized
models [24.073221004661427]
Uncertainty quantification is a central challenge in reliable and trustworthy machine learning.
We show a trade-off between classification accuracy and calibration, unveiling a double descent like behavior in the calibration curve of optimally regularized estimators.
This is in contrast with the empirical Bayes method, which we show to be well calibrated in our setting despite the higher generalization error and overparametrization.
arXiv Detail & Related papers (2022-10-23T16:01:08Z) - BayesNetCNN: incorporating uncertainty in neural networks for
image-based classification tasks [0.29005223064604074]
We propose a method to convert a standard neural network into a Bayesian neural network.
We estimate the variability of predictions by sampling different networks similar to the original one at each forward pass.
We test our model in a large cohort of brain images from Alzheimer's Disease patients.
arXiv Detail & Related papers (2022-09-27T01:07:19Z) - Improving Out-of-Distribution Detection via Epistemic Uncertainty
Adversarial Training [29.4569172720654]
We develop a simple adversarial training scheme that incorporates an attack of the uncertainty predicted by the dropout ensemble.
We demonstrate this method improves OOD detection performance on standard data (i.e., not adversarially crafted), and improves the standardized partial AUC from near-random guessing performance to $geq 0.75$.
arXiv Detail & Related papers (2022-09-05T14:32:19Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.