論文の概要: Suspicious and Anomaly Detection
- arxiv url: http://arxiv.org/abs/2209.03576v1
- Date: Thu, 8 Sep 2022 06:00:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-09 13:00:03.273533
- Title: Suspicious and Anomaly Detection
- Title(参考訳): 不審で異常な検出
- Authors: Shubham Deshmukh, Favin Fernandes, Monali Ahire, Devarshi Borse, Amey
Chavan
- Abstract要約: 本稿では,異常および不審な動作を検出するためのCNNアーキテクチャを提案する。
プロジェクトのために選ばれた活動は、公共の場所で走り、ジャンプし、蹴り、公共の場所で銃、バット、ナイフを運ぶことである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this project we propose a CNN architecture to detect anomaly and
suspicious activities; the activities chosen for the project are running,
jumping and kicking in public places and carrying gun, bat and knife in public
places. With the trained model we compare it with the pre-existing models like
Yolo, vgg16, vgg19. The trained Model is then implemented for real time
detection and also used the. tflite format of the trained .h5 model to build an
android classification.
- Abstract(参考訳): 本研究は, 公共の場でのランニング, ジャンプ, 蹴り, 銃, バット, ナイフを公共の場所で運ぶ, 異常, 不審な活動を検出するCNNアーキテクチャを提案する。
トレーニングされたモデルと、yolo、vgg16、vgg19のような既存のモデルと比較します。
トレーニングされたモデルがリアルタイム検出のために実装され、それも使用される。
訓練された.tfliteフォーマット。
h5モデルでアンドロイドの分類を作ります
関連論文リスト
- Model Pairing Using Embedding Translation for Backdoor Attack Detection on Open-Set Classification Tasks [63.269788236474234]
バックドア検出のためのオープンセット分類タスクにモデルペアを用いることを提案する。
このスコアは、異なるアーキテクチャのモデルがあるにもかかわらず、バックドアの存在を示す指標であることを示している。
この技術は、オープンセット分類タスク用に設計されたモデル上のバックドアの検出を可能にするが、文献ではほとんど研究されていない。
論文 参考訳(メタデータ) (2024-02-28T21:29:16Z) - InstaGen: Enhancing Object Detection by Training on Synthetic Dataset [59.445498550159755]
本稿では,オブジェクト検出機能の向上,例えばカテゴリ拡大や検出性能の向上など,新たなパラダイムを提案する。
我々は、インスタンスレベルのグラウンドヘッドを事前訓練された生成拡散モデルに統合し、生成された画像のインスタンスをローカライズする機能で拡張する。
我々は、InstaGenと呼ばれる拡散モデルの強化版がデータシンセサイザーとして機能することを示すために、徹底的な実験を行う。
論文 参考訳(メタデータ) (2024-02-08T18:59:53Z) - SecurityNet: Assessing Machine Learning Vulnerabilities on Public Models [74.58014281829946]
本研究では, モデル盗難攻撃, メンバーシップ推論攻撃, パブリックモデルにおけるバックドア検出など, いくつかの代表的な攻撃・防御の有効性を解析する。
実験により,これらの攻撃・防御性能は,自己学習モデルと比較して,公共モデルによって大きく異なることが示された。
論文 参考訳(メタデータ) (2023-10-19T11:49:22Z) - Data-Free Model Extraction Attacks in the Context of Object Detection [0.6719751155411076]
多くの機械学習モデルは、モデル抽出攻撃に対して脆弱である。
本研究では,オブジェクト検出における境界ボックス座標の予測のための回帰問題に拡張した逆ブラックボックス攻撃を提案する。
提案したモデル抽出法は,妥当なクエリを用いて有意な結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-08-09T06:23:54Z) - Are You Stealing My Model? Sample Correlation for Fingerprinting Deep
Neural Networks [86.55317144826179]
従来の方法は、常にモデル指紋として転送可能な敵の例を利用する。
本稿では,SAmple correlation (SAC) に基づく新しいモデル盗難検出手法を提案する。
SACは、敵の訓練や移動学習を含む様々なモデル盗難攻撃をうまく防いでいる。
論文 参考訳(メタデータ) (2022-10-21T02:07:50Z) - MOVE: Effective and Harmless Ownership Verification via Embedded
External Features [109.19238806106426]
本稿では,異なる種類のモデル盗難を同時に防ぐために,効果的かつ無害なモデル所有者認証(MOVE)を提案する。
我々は、疑わしいモデルがディフェンダー特定外部特徴の知識を含むかどうかを検証し、所有権検証を行う。
特に、包括的モデル保護を提供するために、ホワイトボックスとブラックボックスの両方の設定でMOVE法を開発した。
論文 参考訳(メタデータ) (2022-08-04T02:22:29Z) - Defending against Model Stealing via Verifying Embedded External
Features [90.29429679125508]
トレーニングサンプルがなく、モデルパラメータや構造にアクセスできない場合でも、敵はデプロイされたモデルを盗むことができる。
我々は、不審なモデルがディフェンダー特定遠近法の特徴の知識を含んでいるかどうかを検証することによって、他の角度からの防御を探索する。
本手法は, 複数段階の盗難処理によって盗難モデルが得られた場合でも, 同時に異なる種類の盗難モデルを検出するのに有効である。
論文 参考訳(メタデータ) (2021-12-07T03:51:54Z) - Get a Model! Model Hijacking Attack Against Machine Learning Models [30.346469782056406]
本稿では,コンピュータビジョンに基づく機械学習モデル,すなわちモデルハイジャック攻撃に対する新たなトレーニング時間攻撃を提案する。
相手はターゲットモデルをハイジャックして、モデル所有者が気づかずに別のタスクを実行することを目的としている。
以上の結果から,2つのモデルハイジャック攻撃が,モデルユーティリティの低下により,高い攻撃成功率を達成できたことが示唆された。
論文 参考訳(メタデータ) (2021-11-08T11:30:50Z) - Detecting Anomalies in Semantic Segmentation with Prototypes [23.999211737485812]
本稿では,プロトタイプ学習による異常セグメンテーションに対処することを提案する。
我々のアプローチは、過去の作品よりも大きな差で、新しい芸術の状態を達成している。
論文 参考訳(メタデータ) (2021-06-01T13:22:33Z) - Membership Inference Attacks Against Object Detection Models [1.0467092641687232]
ブラックボックスオブジェクト検出モデルに対する最初のメンバシップ推論攻撃を示す。
我々は,1段階および2段階検出モデルを用いて訓練した個人機密データの登録状況を明らかにした。
その結果、オブジェクト検出モデルは、他のモデルのような推論攻撃にも弱いことが判明した。
論文 参考訳(メタデータ) (2020-01-12T23:17:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。