論文の概要: Enhancing the Self-Universality for Transferable Targeted Attacks
- arxiv url: http://arxiv.org/abs/2209.03716v2
- Date: Tue, 21 Mar 2023 06:49:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 03:22:04.372037
- Title: Enhancing the Self-Universality for Transferable Targeted Attacks
- Title(参考訳): 移動可能な標的攻撃に対する自己普遍性の向上
- Authors: Zhipeng Wei, Jingjing Chen, Zuxuan Wu, Yu-Gang Jiang
- Abstract要約: 本手法は,高次対角的摂動が標的攻撃に対してより伝達しやすい傾向にあることを示す。
異なる画像上の摂動を最適化する代わりに、異なる領域を最適化して自己ユニバーシティを実現することで、余分なデータを排除することができる。
特徴的類似性欠如により,本手法は,良性画像よりも対向性摂動の特徴が支配的となる。
- 参考スコア(独自算出の注目度): 88.6081640779354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a novel transfer-based targeted attack method that
optimizes the adversarial perturbations without any extra training efforts for
auxiliary networks on training data. Our new attack method is proposed based on
the observation that highly universal adversarial perturbations tend to be more
transferable for targeted attacks. Therefore, we propose to make the
perturbation to be agnostic to different local regions within one image, which
we called as self-universality. Instead of optimizing the perturbations on
different images, optimizing on different regions to achieve self-universality
can get rid of using extra data. Specifically, we introduce a feature
similarity loss that encourages the learned perturbations to be universal by
maximizing the feature similarity between adversarial perturbed global images
and randomly cropped local regions. With the feature similarity loss, our
method makes the features from adversarial perturbations to be more dominant
than that of benign images, hence improving targeted transferability. We name
the proposed attack method as Self-Universality (SU) attack. Extensive
experiments demonstrate that SU can achieve high success rates for
transfer-based targeted attacks. On ImageNet-compatible dataset, SU yields an
improvement of 12\% compared with existing state-of-the-art methods. Code is
available at https://github.com/zhipeng-wei/Self-Universality.
- Abstract(参考訳): 本稿では,訓練データに対する補助ネットワークのトレーニングを必要とせず,対向的摂動を最適化するトランスファーベースターゲティング攻撃手法を提案する。
本手法は,高度に普遍的な対向摂動が標的攻撃に対してより移動しやすい傾向にあるという観測に基づいて提案する。
そこで本研究では,この摂動を画像内の異なる局所領域に不可知化することを提案し,これを自己普遍性と呼ぶ。
異なる画像上の摂動を最適化する代わりに、異なる領域を最適化して自己ユニバーシティを実現することで、余分なデータを排除することができる。
具体的には, 対角的摂動大域画像とランダムに収穫した局所領域との間の特徴類似性を最大化することにより, 学習摂動の普遍化を促す特徴類似性損失を導入する。
特徴的類似性を失うことにより, 対向的摂動の特徴が良性画像よりも支配的になり, 目的の伝達性も向上する。
提案手法を自己普遍性攻撃(su)と呼ぶ。
広範な実験により、suは転送ベースの標的攻撃で高い成功率を達成できることが示されている。
imagenet互換データセットでは、suは既存のstate-of-the-artメソッドと比較して12\%の改善をもたらす。
コードはhttps://github.com/zhipeng-wei/self-universalityで入手できる。
関連論文リスト
- Enhancing Transferability of Targeted Adversarial Examples: A Self-Universal Perspective [13.557972227440832]
ブラックボックスディープニューラルネットワーク(DNN)に対するトランスファーベースの敵攻撃は、未ターゲットの攻撃よりもはるかに難しいことが証明されている。
生成方法である現在のSOTAの印象的な転送性は、大量の追加データを必要とするコストと、ターゲットラベルごとに時間のかかるトレーニングが伴う。
私たちは、この目標を追求する際の入力変換の大きな可能性を明らかにする、自己普遍的な視点を提供します。
論文 参考訳(メタデータ) (2024-07-22T14:51:28Z) - Enhancing Adversarial Attacks: The Similar Target Method [6.293148047652131]
敵対的な例は、ディープニューラルネットワークのアプリケーションに脅威をもたらす。
ディープニューラルネットワークは敵の例に対して脆弱であり、モデルのアプリケーションに脅威を与え、セキュリティ上の懸念を提起する。
我々はSimisal Target(ST)という類似の攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-08-21T14:16:36Z) - A Novel Cross-Perturbation for Single Domain Generalization [54.612933105967606]
単一ドメインの一般化は、モデルが単一のソースドメインでトレーニングされたときに未知のドメインに一般化する能力を高めることを目的としている。
トレーニングデータの限られた多様性は、ドメイン不変の特徴の学習を妨げ、結果として一般化性能を損なう。
トレーニングデータの多様性を高めるために,CPerbを提案する。
論文 参考訳(メタデータ) (2023-08-02T03:16:12Z) - Latent-Optimized Adversarial Neural Transfer for Sarcasm Detection [50.29565896287595]
サーカズム検出のための共通データセットを活用するために,転送学習を適用する。
異なる損失が互いに対応できる汎用的な潜時最適化戦略を提案します。
特に、isarcasmデータセットの以前の状態よりも10.02%の絶対性能向上を達成している。
論文 参考訳(メタデータ) (2021-04-19T13:07:52Z) - On Generating Transferable Targeted Perturbations [102.3506210331038]
伝達性の高い標的摂動に対する新しい生成的アプローチを提案する。
私たちのアプローチは、ターゲットクラスの「乱れた画像分布」にマッチし、高いターゲット転送率につながります。
論文 参考訳(メタデータ) (2021-03-26T17:55:28Z) - Contextual Fusion For Adversarial Robustness [0.0]
ディープニューラルネットワークは、通常、1つの特定の情報ストリームを処理し、様々な種類の敵の摂動に影響を受けやすいように設計されている。
そこで我々はPlaces-CNNとImagenet-CNNから並列に抽出した背景特徴と前景特徴を組み合わせた融合モデルを開発した。
グラデーションをベースとした攻撃では,フュージョンは乱れのないデータの性能を低下させることなく,分類の大幅な改善を可能にする。
論文 参考訳(メタデータ) (2020-11-18T20:13:23Z) - Double Targeted Universal Adversarial Perturbations [83.60161052867534]
本稿では, インスタンス別画像依存摂動と汎用的普遍摂動のギャップを埋めるために, 二重目標普遍摂動(DT-UAP)を導入する。
提案したDTAアルゴリズムの幅広いデータセットに対する有効性を示すとともに,物理攻撃の可能性を示す。
論文 参考訳(メタデータ) (2020-10-07T09:08:51Z) - Frequency-Tuned Universal Adversarial Attacks [19.79803434998116]
本稿では,周波数調整型ユニバーサルアタック手法を提案する。
提案手法は, 誤認識率の観点から, 知覚可能性と有効性とのバランスが良好であることを示す。
論文 参考訳(メタデータ) (2020-03-11T22:52:19Z) - Image Fine-grained Inpainting [89.17316318927621]
拡張畳み込みの密結合を利用してより大きく効果的な受容場を得る一段階モデルを提案する。
この効率的なジェネレータをよく訓練するために、頻繁に使用されるVGG特徴整合損失を除いて、新しい自己誘導回帰損失を設計する。
また、局所的・グローバルな分枝を持つ識別器を用いて、局所的・グローバルな内容の整合性を確保する。
論文 参考訳(メタデータ) (2020-02-07T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。