論文の概要: Assessing Lower Limb Strength using Internet-of-Things Enabled Chair
- arxiv url: http://arxiv.org/abs/2209.04042v3
- Date: Tue, 27 Aug 2024 17:24:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 20:28:28.270719
- Title: Assessing Lower Limb Strength using Internet-of-Things Enabled Chair
- Title(参考訳): Internet-of-Things Enabled Chair を用いた下肢強度の評価
- Authors: Chelsea Yeh, Hanna Kaitlin Dy, Phillip Schodinger, Hudson Kaleb Dy,
- Abstract要約: このプロジェクトは、椅子に取り付けられたセンサーで個人の進捗を計測し、評価することを目指している。
圧力センサーは椅子の様々な場所に装着されるが、座席、背もたれ、手、休息、脚に限らない。
そして、データセットとタイミング情報を機械学習モデルに入力して、動きのさまざまなフェーズにおける相対的な強度と弱さを推定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This project describes the application of the technologies of Machine Learning and Internet-of-Things to assess the lower limb strength of individuals undergoing rehabilitation or therapy. Specifically, it seeks to measure and assess the progress of individuals by sensors attached to chairs and processing the data through Google GPU Tensorflow CoLab. Pressure sensors are attached to various locations on a chair, including but not limited to the seating area, backrest, hand rests, and legs. Sensor data from the individual performing both sit-to-stand transition and stand-to-sit transition provides a time series dataset regarding the pressure distribution and vibratory motion on the chair. The dataset and timing information can then be fed into a machine learning model to estimate the relative strength and weakness during various phases of the movement.
- Abstract(参考訳): 本研究は、リハビリテーションやセラピーを行う個人の下肢強度を評価するために、機械学習とInternet-of-Thingsの技術の適用について述べる。
具体的には、椅子に取り付けられたセンサーで個人の進捗を測定して評価し、Google GPU Tensorflow CoLabを通じてデータを処理する。
圧力センサーは椅子の様々な場所に装着されるが、座席、背もたれ、手足、脚に限らない。
立位から立位への遷移と立位への遷移の両方を行う個人からのセンサデータは、椅子の圧力分布と振動運動に関する時系列データセットを提供する。
そして、データセットとタイミング情報を機械学習モデルに入力して、動きのさまざまなフェーズにおける相対的な強度と弱さを推定する。
関連論文リスト
- Scaling Wearable Foundation Models [54.93979158708164]
センサ基礎モデルのスケーリング特性を計算,データ,モデルサイズにわたって検討する。
最大4000万時間分の心拍数、心拍変動、心電図活動、加速度計、皮膚温度、および1分間のデータを用いて、私たちはLSMを作成します。
この結果から,LSMのスケーリング法則は,時間とセンサの両面において,計算や外挿などのタスクに対して確立されている。
論文 参考訳(メタデータ) (2024-10-17T15:08:21Z) - Daily Physical Activity Monitoring -- Adaptive Learning from Multi-source Motion Sensor Data [17.604797095380114]
医療アプリケーションでは、手首のウェアラブルデバイスのような単一のソースからのデータを使用する機械学習モデルを開発する必要性が高まっている。
しかしながら、単一ソースデータを使用することの制限は、人間の活動の全範囲を捉えるのに失敗するため、モデルの精度を損なうことが多い。
実験室で収集したマルチソースデータを活用することにより,日常的なアプリケーションを対象とした機械学習モデルを最適化するトランスファー学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-26T01:08:28Z) - HabitatDyn Dataset: Dynamic Object Detection to Kinematics Estimation [16.36110033895749]
本稿では,合成RGBビデオ,セマンティックラベル,深度情報,および運動情報を含むデータセットHabitatDynを提案する。
HabitatDynは移動カメラを搭載した移動ロボットの視点で作られ、6種類の移動物体をさまざまな速度で撮影する30のシーンを含んでいる。
論文 参考訳(メタデータ) (2023-04-21T09:57:35Z) - Video-based Pose-Estimation Data as Source for Transfer Learning in
Human Activity Recognition [71.91734471596433]
オンボディデバイスを用いたヒューマンアクティビティ認識(HAR)は、制約のない環境での特定の人間の行動を特定する。
これまでの研究は、トランスファーラーニングが、少ないデータでシナリオに対処するための良い戦略であることを実証した。
本稿では,人為的位置推定を目的としたデータセットを伝達学習の情報源として用いることを提案する。
論文 参考訳(メタデータ) (2022-12-02T18:19:36Z) - Sleep Posture One-Shot Learning Framework Using Kinematic Data
Augmentation: In-Silico and In-Vivo Case Studies [6.123523234813773]
睡眠姿勢は、夜行性クランプやより深刻な筋骨格障害などのいくつかの健康状態と関連している。
本稿では,最小限の関節角度測定に基づく睡眠姿勢分類のための新しい枠組みを提案する。
提案されたフレームワークは、合成データで100%、実データで92.7%の精度を約束し、文献で利用可能なアートデータハングリーアルゴリズムの状況に匹敵する精度を達成した。
論文 参考訳(メタデータ) (2022-05-22T09:06:42Z) - Posture Prediction for Healthy Sitting using a Smart Chair [0.0]
腰痛は筋骨格障害や腰痛のリスク因子として認識されている。
本研究は、人物の座位姿勢を分類するための機械学習モデルを構築する。
論文 参考訳(メタデータ) (2022-01-05T20:31:28Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
本稿では,物理に基づくメタバース合成による視覚駆動型ロボットグルーピングのための大規模ベンチマークデータセットを提案する。
提案するデータセットには,10万の画像と25種類のオブジェクトが含まれている。
また,オブジェクト検出とセグメンテーション性能を評価するためのデータセットとともに,新しいレイアウト重み付け性能指標を提案する。
論文 参考訳(メタデータ) (2021-12-29T17:23:24Z) - Benchmarking high-fidelity pedestrian tracking systems for research,
real-time monitoring and crowd control [55.41644538483948]
実生活環境における高忠実な歩行者追跡は,群集動態研究において重要なツールである。
この技術が進歩するにつれて、社会においても益々有用になってきている。
歩行者追跡技術の研究と技術に成功させるためには、正確さの検証とベンチマークが不可欠である。
我々は、プライバシーに配慮した歩行者追跡技術のためのベンチマークスイートをコミュニティのオープンスタンダードに向けて提示し、議論する。
論文 参考訳(メタデータ) (2021-08-26T11:45:26Z) - Synthesizing Skeletal Motion and Physiological Signals as a Function of
a Virtual Human's Actions and Emotions [10.59409233835301]
本研究では, 同期運動, 心電図, 血圧, 呼吸, 皮膚伝導信号の計算モデルからなるシステムを開発した。
提案されたフレームワークはモジュール化されており、柔軟性によってさまざまなモデルを試すことができる。
ラウンド・ザ・タイム・モニタリングのためのML研究を低コストで行うことに加えて、提案されたフレームワークはコードとデータの再利用を可能にする。
論文 参考訳(メタデータ) (2021-02-08T21:56:15Z) - SensiX: A Platform for Collaborative Machine Learning on the Edge [69.1412199244903]
センサデータとセンサモデルの間に留まるパーソナルエッジプラットフォームであるSensiXを紹介する。
動作および音声に基づくマルチデバイスセンシングシステムの開発において,その有効性を示す。
評価の結果,SensiXは3mWのオーバヘッドを犠牲にして,全体の精度が7~13%向上し,環境のダイナミクスが最大30%向上することがわかった。
論文 参考訳(メタデータ) (2020-12-04T23:06:56Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
本稿では,事前学習されたロボット知覚モデルの最終的な目的と協調して設計された感覚データのタスク関連表現を学習するアルゴリズムを提案する。
本アルゴリズムは,ロボットの知覚データを競合する手法の最大11倍まで積極的に圧縮する。
論文 参考訳(メタデータ) (2020-11-06T07:39:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。