RASR: Risk-Averse Soft-Robust MDPs with EVaR and Entropic Risk
- URL: http://arxiv.org/abs/2209.04067v1
- Date: Fri, 9 Sep 2022 00:34:58 GMT
- Title: RASR: Risk-Averse Soft-Robust MDPs with EVaR and Entropic Risk
- Authors: Jia Lin Hai, Marek Petrik, Mohammad Ghavamzadeh, Reazul Russel
- Abstract summary: We propose and analyze a new framework to jointly model the risk associated with uncertainties in finite-horizon and discounted infinite-horizon MDPs.
We show that when the risk-aversion is defined using either EVaR or the entropic risk, the optimal policy in RASR can be computed efficiently using a new dynamic program formulation with a time-dependent risk level.
- Score: 28.811725782388688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prior work on safe Reinforcement Learning (RL) has studied risk-aversion to
randomness in dynamics (aleatory) and to model uncertainty (epistemic) in
isolation. We propose and analyze a new framework to jointly model the risk
associated with epistemic and aleatory uncertainties in finite-horizon and
discounted infinite-horizon MDPs. We call this framework that combines
Risk-Averse and Soft-Robust methods RASR. We show that when the risk-aversion
is defined using either EVaR or the entropic risk, the optimal policy in RASR
can be computed efficiently using a new dynamic program formulation with a
time-dependent risk level. As a result, the optimal risk-averse policies are
deterministic but time-dependent, even in the infinite-horizon discounted
setting. We also show that particular RASR objectives reduce to risk-averse RL
with mean posterior transition probabilities. Our empirical results show that
our new algorithms consistently mitigate uncertainty as measured by EVaR and
other standard risk measures.
Related papers
- Robust Risk-Sensitive Reinforcement Learning with Conditional Value-at-Risk [23.63388546004777]
We analyze the robustness of CVaR-based risk-sensitive RL under Robust Markov Decision Processes.
Motivated by the existence of decision-dependent uncertainty in real-world problems, we study problems with state-action-dependent ambiguity sets.
arXiv Detail & Related papers (2024-05-02T20:28:49Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
Risk-sensitive reinforcement learning aims to optimize policies that balance the expected reward and risk.
We present a novel framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations.
We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis.
arXiv Detail & Related papers (2023-07-06T08:14:54Z) - Regret Bounds for Risk-sensitive Reinforcement Learning with Lipschitz
Dynamic Risk Measures [23.46659319363579]
We present two model-based algorithms applied to emphLipschitz dynamic risk measures.
Notably, our upper bounds demonstrate optimal dependencies on the number of actions and episodes.
arXiv Detail & Related papers (2023-06-04T16:24:19Z) - Safe Deployment for Counterfactual Learning to Rank with Exposure-Based
Risk Minimization [63.93275508300137]
We introduce a novel risk-aware Counterfactual Learning To Rank method with theoretical guarantees for safe deployment.
Our experimental results demonstrate the efficacy of our proposed method, which is effective at avoiding initial periods of bad performance when little data is available.
arXiv Detail & Related papers (2023-04-26T15:54:23Z) - Risk-Averse Reinforcement Learning via Dynamic Time-Consistent Risk
Measures [10.221369785560785]
In this paper, we consider the problem of maximizing dynamic risk of a sequence of rewards in Markov Decision Processes (MDPs)
Using a convex combination of expectation and conditional value-at-risk (CVaR) as a special one-step conditional risk measure, we reformulate the risk-averse MDP as a risk-neutral counterpart with augmented action space and manipulation on the immediate rewards.
Our numerical studies show that the risk-averse setting can reduce the variance and enhance robustness of the results.
arXiv Detail & Related papers (2023-01-14T21:43:18Z) - One Risk to Rule Them All: A Risk-Sensitive Perspective on Model-Based
Offline Reinforcement Learning [25.218430053391884]
We propose risk-sensitivity as a mechanism to jointly address both of these issues.
Risk-aversion to aleatoric uncertainty discourages actions that may result in poor outcomes due to environmentity.
Our experiments show that our algorithm achieves competitive performance on deterministic benchmarks.
arXiv Detail & Related papers (2022-11-30T21:24:11Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
In risk-averse reinforcement learning (RL), the goal is to optimize some risk measure of the returns.
We prove that under certain conditions this inevitably leads to a local-optimum barrier, and propose a soft risk mechanism to bypass it.
We demonstrate improved risk aversion in maze navigation, autonomous driving, and resource allocation benchmarks.
arXiv Detail & Related papers (2022-05-10T19:40:52Z) - Risk-Constrained Thompson Sampling for CVaR Bandits [82.47796318548306]
We consider a popular risk measure in quantitative finance known as the Conditional Value at Risk (CVaR)
We explore the performance of a Thompson Sampling-based algorithm CVaR-TS under this risk measure.
arXiv Detail & Related papers (2020-11-16T15:53:22Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
In risk-sensitive learning, one aims to find a hypothesis that minimizes a risk-averse (or risk-seeking) measure of loss.
We study the generalization properties of risk-sensitive learning schemes whose optimand is described via optimized certainty equivalents.
arXiv Detail & Related papers (2020-06-15T05:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.