Efficient Risk-Averse Reinforcement Learning
- URL: http://arxiv.org/abs/2205.05138v1
- Date: Tue, 10 May 2022 19:40:52 GMT
- Title: Efficient Risk-Averse Reinforcement Learning
- Authors: Ido Greenberg, Yinlam Chow, Mohammad Ghavamzadeh, Shie Mannor
- Abstract summary: In risk-averse reinforcement learning (RL), the goal is to optimize some risk measure of the returns.
We prove that under certain conditions this inevitably leads to a local-optimum barrier, and propose a soft risk mechanism to bypass it.
We demonstrate improved risk aversion in maze navigation, autonomous driving, and resource allocation benchmarks.
- Score: 79.61412643761034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In risk-averse reinforcement learning (RL), the goal is to optimize some risk
measure of the returns. A risk measure often focuses on the worst returns out
of the agent's experience. As a result, standard methods for risk-averse RL
often ignore high-return strategies. We prove that under certain conditions
this inevitably leads to a local-optimum barrier, and propose a soft risk
mechanism to bypass it. We also devise a novel Cross Entropy module for risk
sampling, which (1) preserves risk aversion despite the soft risk; (2)
independently improves sample efficiency. By separating the risk aversion of
the sampler and the optimizer, we can sample episodes with poor conditions, yet
optimize with respect to successful strategies. We combine these two concepts
in CeSoR - Cross-entropy Soft-Risk optimization algorithm - which can be
applied on top of any risk-averse policy gradient (PG) method. We demonstrate
improved risk aversion in maze navigation, autonomous driving, and resource
allocation benchmarks, including in scenarios where standard risk-averse PG
completely fails.
Related papers
- Risk-Sensitive RL with Optimized Certainty Equivalents via Reduction to
Standard RL [48.1726560631463]
We study Risk-Sensitive Reinforcement Learning with the Optimized Certainty Equivalent (OCE) risk.
We propose two general meta-algorithms via reductions to standard RL.
We show that it learns the optimal risk-sensitive policy while prior algorithms provably fail.
arXiv Detail & Related papers (2024-03-10T21:45:12Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - RiskQ: Risk-sensitive Multi-Agent Reinforcement Learning Value Factorization [49.26510528455664]
We introduce the Risk-sensitive Individual-Global-Max (RIGM) principle as a generalization of the Individual-Global-Max (IGM) and Distributional IGM (DIGM) principles.
We show that RiskQ can obtain promising performance through extensive experiments.
arXiv Detail & Related papers (2023-11-03T07:18:36Z) - Is Risk-Sensitive Reinforcement Learning Properly Resolved? [32.42976780682353]
We propose a novel algorithm, namely Trajectory Q-Learning (TQL), for RSRL problems with provable convergence to the optimal policy.
Based on our new learning architecture, we are free to introduce a general and practical implementation for different risk measures to learn disparate risk-sensitive policies.
arXiv Detail & Related papers (2023-07-02T11:47:21Z) - Robust Risk-Aware Option Hedging [2.405471533561618]
We showcase the potential of robust risk-aware reinforcement learning (RL) in mitigating the risks associated with path-dependent financial derivatives.
We apply this methodology to the hedging of barrier options, and highlight how the optimal hedging strategy undergoes distortions as the agent moves from being risk-averse to risk-seeking.
arXiv Detail & Related papers (2023-03-27T13:57:13Z) - Risk-Averse Reinforcement Learning via Dynamic Time-Consistent Risk
Measures [10.221369785560785]
In this paper, we consider the problem of maximizing dynamic risk of a sequence of rewards in Markov Decision Processes (MDPs)
Using a convex combination of expectation and conditional value-at-risk (CVaR) as a special one-step conditional risk measure, we reformulate the risk-averse MDP as a risk-neutral counterpart with augmented action space and manipulation on the immediate rewards.
Our numerical studies show that the risk-averse setting can reduce the variance and enhance robustness of the results.
arXiv Detail & Related papers (2023-01-14T21:43:18Z) - RASR: Risk-Averse Soft-Robust MDPs with EVaR and Entropic Risk [28.811725782388688]
We propose and analyze a new framework to jointly model the risk associated with uncertainties in finite-horizon and discounted infinite-horizon MDPs.
We show that when the risk-aversion is defined using either EVaR or the entropic risk, the optimal policy in RASR can be computed efficiently using a new dynamic program formulation with a time-dependent risk level.
arXiv Detail & Related papers (2022-09-09T00:34:58Z) - Automatic Risk Adaptation in Distributional Reinforcement Learning [26.113528145137497]
The use of Reinforcement Learning (RL) agents in practical applications requires the consideration of suboptimal outcomes.
This is especially important in safety-critical environments, where errors can lead to high costs or damage.
We show reduced failure rates by up to a factor of 7 and improved generalization performance by up to 14% compared to both risk-aware and risk-agnostic agents.
arXiv Detail & Related papers (2021-06-11T11:31:04Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
In risk-sensitive learning, one aims to find a hypothesis that minimizes a risk-averse (or risk-seeking) measure of loss.
We study the generalization properties of risk-sensitive learning schemes whose optimand is described via optimized certainty equivalents.
arXiv Detail & Related papers (2020-06-15T05:25:02Z) - Mean-Variance Policy Iteration for Risk-Averse Reinforcement Learning [75.17074235764757]
We present a framework for risk-averse control in a discounted infinite horizon MDP.
MVPI enjoys great flexibility in that any policy evaluation method and risk-neutral control method can be dropped in for risk-averse control off the shelf.
This flexibility reduces the gap between risk-neutral control and risk-averse control and is achieved by working on a novel augmented MDP.
arXiv Detail & Related papers (2020-04-22T22:23:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.