論文の概要: Pathology Synthesis of 3D-Consistent Cardiac MR Images using 2D VAEs and
GANs
- arxiv url: http://arxiv.org/abs/2209.04223v2
- Date: Tue, 30 May 2023 14:37:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 02:46:41.326744
- Title: Pathology Synthesis of 3D-Consistent Cardiac MR Images using 2D VAEs and
GANs
- Title(参考訳): 2次元VAEとGANを用いた心筋MR画像の病態合成
- Authors: Sina Amirrajab, Cristian Lorenz, Juergen Weese, Josien Pluim, Marcel
Breeuwer
- Abstract要約: 本稿では,教師付きディープラーニング(DL)トレーニングの適用のためのラベル付きデータを生成する手法を提案する。
画像合成はラベル変形とラベルから画像への変換からなる。
心臓MRI画像のデータベースを多様化・拡張する手法として,このようなアプローチが有効であることを示す。
- 参考スコア(独自算出の注目度): 0.5039813366558306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a method for synthesizing cardiac magnetic resonance (MR) images
with plausible heart pathologies and realistic appearances for the purpose of
generating labeled data for the application of supervised deep-learning (DL)
training. The image synthesis consists of label deformation and label-to-image
translation tasks. The former is achieved via latent space interpolation in a
VAE model, while the latter is accomplished via a label-conditional GAN model.
We devise three approaches for label manipulation in the latent space of the
trained VAE model; i) \textbf{intra-subject synthesis} aiming to interpolate
the intermediate slices of a subject to increase the through-plane resolution,
ii) \textbf{inter-subject synthesis} aiming to interpolate the geometry and
appearance of intermediate images between two dissimilar subjects acquired with
different scanner vendors, and iii) \textbf{pathology synthesis} aiming to
synthesize a series of pseudo-pathological synthetic subjects with
characteristics of a desired heart disease. Furthermore, we propose to model
the relationship between 2D slices in the latent space of the VAE prior to
reconstruction for generating 3D-consistent subjects from stacking up 2D
slice-by-slice generations. We demonstrate that such an approach could provide
a solution to diversify and enrich an available database of cardiac MR images
and to pave the way for the development of generalizable DL-based image
analysis algorithms. We quantitatively evaluate the quality of the synthesized
data in an augmentation scenario to achieve generalization and robustness to
multi-vendor and multi-disease data for image segmentation. Our code is
available at https://github.com/sinaamirrajab/CardiacPathologySynthesis.
- Abstract(参考訳): 本稿では, 心臓MRI画像にプラウシブルな心臓病理像とリアルな外観像を合成し, 教師付き深層学習(DL)トレーニングのためのラベル付きデータを生成する方法を提案する。
画像合成はラベル変形とラベルから画像への変換からなる。
前者はVOEモデルにおける潜時空間補間により達成され、後者はラベル条件付きGANモデルによって達成される。
訓練されたvaeモデルの潜在空間におけるラベル操作の3つのアプローチを考案する。
i) 被写体の中間スライスを補間し、面内分解能を高めることを目的とした \textbf{intra-subject synthesis}
二 異なるスキャナーベンダーで取得した二つの異なる対象物間の中間画像の形状及び外観を補間することを目的とした \textbf{inter-subject synthesis}
iii) 所望の心臓疾患の特徴を有する疑似病理合成対象を合成することを目的とした<textbf{pathology synthesis>。
さらに,VAEの潜伏空間における2次元スライス間の関係をモデル化し,2次元スライス・バイ・スライス世代を積み重ねることから3次元一貫性のある被写体を生成する手法を提案する。
このようなアプローチは、利用可能な心臓MR画像のデータベースを多様化・強化し、一般化可能なDLベース画像解析アルゴリズムを開発するための道を開くためのソリューションとなることを実証する。
画像セグメンテーションのためのマルチベンダおよびマルチディスリーズデータに対する一般化とロバスト性を達成するために, 拡張シナリオにおける合成データの品質を定量的に評価する。
私たちのコードはhttps://github.com/sinaamirrajab/CardiacPathologySynthesisで公開されています。
関連論文リスト
- cWDM: Conditional Wavelet Diffusion Models for Cross-Modality 3D Medical Image Synthesis [1.767791678320834]
本稿では「BraTS 2024脳MR画像合成チャレンジ」に貢献する。
高分解能ボリュームの対画像変換タスクを解くための条件付きウェーブレット拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-11-26T08:17:57Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
本稿では,3次元医用画像合成の新しい生成手法であるGEM-3Dを提案する。
本手法は2次元スライスから始まり,3次元スライスマスクを用いて患者に提供するための情報スライスとして機能し,生成過程を伝搬する。
3D医療画像をマスクと患者の事前情報に分解することで、GEM-3Dは多目的な3D画像を生成する柔軟な、かつ効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2024-03-19T15:57:04Z) - A Data Augmentation Pipeline to Generate Synthetic Labeled Datasets of
3D Echocardiography Images using a GAN [6.0419497882916655]
本研究では,3次元心エコー画像とそれに対応する基底真理ラベルを合成する画像生成パイプラインを提案する。
提案手法は, 心臓の詳細な解剖学的区分を基底真理ラベル源として利用する。
論文 参考訳(メタデータ) (2024-03-08T15:26:27Z) - S^2Former-OR: Single-Stage Bi-Modal Transformer for Scene Graph Generation in OR [50.435592120607815]
外科手術のシーングラフ生成(SGG)は、手術室(OR)におけるホモロジー認知知能の増強に不可欠である
これまでの研究は主に多段階学習に依存しており、生成したセマンティックシーングラフはポーズ推定とオブジェクト検出を伴う中間プロセスに依存している。
本研究では,S2Former-OR(S2Former-OR)と呼ばれるORにおけるSGGのための新しいシングルステージバイモーダルトランスフォーマフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-22T11:40:49Z) - Bi-Modality Medical Image Synthesis Using Semi-Supervised Sequential
Generative Adversarial Networks [35.358653509217994]
本稿では,GANと半教師付き学習に基づく双方向医療画像合成手法を提案する。
提案手法は, 2つのモードの画像を逐次的に合成する2つの生成モジュールから構成される。
視覚的および定量的な結果から,本手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-27T10:39:33Z) - Make-A-Volume: Leveraging Latent Diffusion Models for Cross-Modality 3D
Brain MRI Synthesis [35.45013834475523]
クロスモダリティ医療画像合成は重要なトピックであり、医療画像分野における多くの応用を促進する可能性がある。
現在の医療画像合成法のほとんどは、生成的敵ネットワークに依存しており、悪名高いモード崩壊と不安定な訓練に悩まされている。
本稿では,2次元バックボーンを利用した医療データ合成のための新しいパラダイムを提案し,拡散型フレームワークであるMake-A-Volumeを提案する。
論文 参考訳(メタデータ) (2023-07-19T16:01:09Z) - SIAN: Style-Guided Instance-Adaptive Normalization for Multi-Organ
Histopathology Image Synthesis [63.845552349914186]
本研究では,異なる臓器に対して,現実的な色分布とテクスチャを合成するためのスタイル誘導型インスタンス適応正規化(SIAN)を提案する。
4つのフェーズは一緒に動作し、生成ネットワークに統合され、イメージセマンティクス、スタイル、インスタンスレベルのバウンダリを埋め込む。
論文 参考訳(メタデータ) (2022-09-02T16:45:46Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
本稿では、2つの学習可能なニューラルモジュールからなる物理駆動型生成手法を提案する。
データ合成フレームワークは、複数のデータセットの下流セグメンテーション性能を改善する。
論文 参考訳(メタデータ) (2020-09-01T19:17:46Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z) - 4D Semantic Cardiac Magnetic Resonance Image Synthesis on XCAT
Anatomical Model [0.7959841510571622]
心臓磁気共鳴画像(CMR)を3D+tラベルで合成するハイブリッド制御可能な画像生成法を提案する。
本手法は, 解剖学的根拠として, メカニスティック4D eXtended CArdiac Torso (XCAT) 心モデルを用いている。
本研究では、条件付き画像合成にSPADE(State-of-the-the-the-art SPatially Adaptive De-normalization)技術を用いる。
論文 参考訳(メタデータ) (2020-02-17T17:25:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。