Retinal Image Restoration and Vessel Segmentation using Modified
Cycle-CBAM and CBAM-UNet
- URL: http://arxiv.org/abs/2209.04234v1
- Date: Fri, 9 Sep 2022 10:47:20 GMT
- Title: Retinal Image Restoration and Vessel Segmentation using Modified
Cycle-CBAM and CBAM-UNet
- Authors: Alnur Alimanov and Md Baharul Islam
- Abstract summary: A cycle-consistent generative adversarial network (CycleGAN) with a convolution block attention module (CBAM) is used for retinal image restoration.
A modified UNet is used for retinal vessel segmentation for the restored retinal images.
The proposed method can significantly reduce the degradation effects caused by out-of-focus blurring, color distortion, low, high, and uneven illumination.
- Score: 0.7868449549351486
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clinical screening with low-quality fundus images is challenging and
significantly leads to misdiagnosis. This paper addresses the issue of
improving the retinal image quality and vessel segmentation through retinal
image restoration. More specifically, a cycle-consistent generative adversarial
network (CycleGAN) with a convolution block attention module (CBAM) is used for
retinal image restoration. A modified UNet is used for retinal vessel
segmentation for the restored retinal images (CBAM-UNet). The proposed model
consists of two generators and two discriminators. Generators translate images
from one domain to another, i.e., from low to high quality and vice versa.
Discriminators classify generated and original images. The retinal vessel
segmentation model uses downsampling, bottlenecking, and upsampling layers to
generate segmented images. The CBAM has been used to enhance the feature
extraction of these models. The proposed method does not require paired image
datasets, which are challenging to produce. Instead, it uses unpaired data that
consists of low- and high-quality fundus images retrieved from publicly
available datasets. The restoration performance of the proposed method was
evaluated using full-reference evaluation metrics, e.g., peak signal-to-noise
ratio (PSNR) and structural similarity index measure (SSIM). The retinal vessel
segmentation performance was compared with the ground-truth fundus images. The
proposed method can significantly reduce the degradation effects caused by
out-of-focus blurring, color distortion, low, high, and uneven illumination.
Experimental results show the effectiveness of the proposed method for retinal
image restoration and vessel segmentation.
Related papers
- Retinal Image Restoration using Transformer and Cycle-Consistent
Generative Adversarial Network [0.7868449549351486]
Medical imaging plays a significant role in detecting and treating various diseases.
We propose a retinal image enhancement method using a vision transformer and convolutional neural network.
arXiv Detail & Related papers (2023-03-03T14:10:47Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Parametric Scaling of Preprocessing assisted U-net Architecture for
Improvised Retinal Vessel Segmentation [1.3869502085838448]
We present an image enhancement technique based on the morphological preprocessing coupled with a scaled U-net architecture.
A significant improvement as compared to the other algorithms in the domain, in terms of the area under ROC curve (>0.9762) and classification accuracy (>95.47%) are evident from the results.
arXiv Detail & Related papers (2022-03-18T15:26:05Z) - RFormer: Transformer-based Generative Adversarial Network for Real
Fundus Image Restoration on A New Clinical Benchmark [8.109057397954537]
Ophthalmologists have used fundus images to screen and diagnose eye diseases.
Low-quality (LQ) degraded fundus images easily lead to uncertainty in clinical screening and generally increase the risk of misdiagnosis.
We propose a novel Transformer-based Generative Adversarial Network (RFormer) to restore the real degradation of clinical fundus images.
arXiv Detail & Related papers (2022-01-03T03:56:58Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Deep learning-based bias transfer for overcoming laboratory differences
of microscopic images [0.0]
We evaluate, compare, and improve existing generative model architectures to overcome domain shifts for immunofluorescence (IF) and Hematoxylin and Eosin (H&E) stained microscopy images.
Adapting the bias of the samples significantly improved the pixel-level segmentation for human kidney glomeruli and podocytes and improved the classification accuracy for human prostate biopsies by up to 14%.
arXiv Detail & Related papers (2021-05-25T09:02:30Z) - Prediction of low-keV monochromatic images from polyenergetic CT scans
for improved automatic detection of pulmonary embolism [21.47219330040151]
We are training convolutional neural networks that can emulate the generation of monoE images from conventional single energy CT acquisitions.
We expand on these methods through the use of a multi-task optimization approach, under which the networks achieve improved classification as well as generation results.
arXiv Detail & Related papers (2021-02-02T11:42:31Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM) algorithm incorporates a morphological reconstruction operation and a tight wavelet frame transform.
We present an improved FCM algorithm by imposing an $ell_0$ regularization term on the residual between the feature set and its ideal value.
Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.
arXiv Detail & Related papers (2020-02-14T10:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.