論文の概要: Investigation of a Machine learning methodology for the SKA pulsar
search pipeline
- arxiv url: http://arxiv.org/abs/2209.04430v1
- Date: Fri, 9 Sep 2022 17:48:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-12 12:28:37.176262
- Title: Investigation of a Machine learning methodology for the SKA pulsar
search pipeline
- Title(参考訳): SKAパルサー探索パイプラインのための機械学習手法の検討
- Authors: Shashank Sanjay Bhat, Prabu Thiagaraj, Ben Stappers, Atul Ghalame,
Snehanshu Saha, T.S.B Sudarshan, Zaffirah Hosenie
- Abstract要約: SKAパルサー探索パイプラインはパルサーのリアルタイム検出に使用される。
候補画像を検出するために,Mask R-CNNモデルを訓練した。
大規模なデータセットに対する関心領域を効率的にマークするために、カスタムアノテーションツールが開発された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The SKA pulsar search pipeline will be used for real time detection of
pulsars. Modern radio telescopes such as SKA will be generating petabytes of
data in their full scale of operation. Hence experience-based and data-driven
algorithms become indispensable for applications such as candidate detection.
Here we describe our findings from testing a state of the art object detection
algorithm called Mask R-CNN to detect candidate signatures in the SKA pulsar
search pipeline. We have trained the Mask R-CNN model to detect candidate
images. A custom annotation tool was developed to mark the regions of interest
in large datasets efficiently. We have successfully demonstrated this algorithm
by detecting candidate signatures on a simulation dataset. The paper presents
details of this work with a highlight on the future prospects.
- Abstract(参考訳): SKAパルサー探索パイプラインはパルサーのリアルタイム検出に使用される。
SKAのような現代の電波望遠鏡は、完全な運用規模でペタバイト単位のデータを生成する。
したがって、経験に基づくデータ駆動アルゴリズムは、候補検出のようなアプリケーションには不可欠である。
本稿では,SKAパルサー探索パイプラインの候補シグネチャを検出するために,Mask R-CNNと呼ばれるアートオブジェクト検出アルゴリズムの状態を検証した結果について述べる。
候補画像を検出するために,Mask R-CNNモデルを訓練した。
大規模なデータセットに関心のある領域を効率的にマークするカスタムアノテーションツールが開発された。
シミュレーションデータセット上で候補シグネチャを検出することで,このアルゴリズムの実証に成功した。
本稿では,本研究の詳細と今後の展望について概説する。
関連論文リスト
- Improving the matching of deformable objects by learning to detect
keypoints [6.4587163310833855]
本研究では,非剛性画像対応タスクにおける正しいマッチング数を増やすための新しい学習キーポイント検出手法を提案する。
我々はエンドツーエンドの畳み込みニューラルネットワーク(CNN)をトレーニングし、考慮された記述子により適したキーポイント位置を見つける。
実験により,本手法は検出手法と併用して多数の記述子の平均マッチング精度を向上させることを示した。
また,本手法を,現在利用可能な最も優れたキーポイント検出器と同等に動作する複雑な実世界のタスクオブジェクト検索に適用する。
論文 参考訳(メタデータ) (2023-09-01T13:02:19Z) - Unlocking the Use of Raw Multispectral Earth Observation Imagery for Onboard Artificial Intelligence [3.3810628880631226]
本研究は,ターゲットイベントの検出のためのデータセット作成を自動化する新しい手法を提案する。
提案手法は、まず、空間帯域登録とジオレファレンスからなるパイプラインを適用することにより、生データを処理する。
Level-1C製品上で、イベント固有の最先端アルゴリズムを活用することで、ターゲットイベントを検出する。
本研究では,温熱ホットスポットを含むSentinel-2生データの最初のデータセットであるTHRawS (Thermal Hotspots in Raw Sentinel-2 data) を実現するために提案手法を適用した。
論文 参考訳(メタデータ) (2023-05-12T09:54:21Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
未知の物体を検出するために,サリエンデット法(SalienDet)を提案する。
我々のSaienDetは、オブジェクトの提案生成のための画像機能を強化するために、サリエンシに基づくアルゴリズムを利用している。
オープンワールド検出を実現するためのトレーニングサンプルセットにおいて、未知のオブジェクトをすべてのオブジェクトと区別するためのデータセットレザベリングアプローチを設計する。
論文 参考訳(メタデータ) (2023-05-11T16:19:44Z) - Unified Functional Hashing in Automatic Machine Learning [58.77232199682271]
高速に統一された関数型ハッシュを用いることで,大きな効率向上が得られることを示す。
私たちのハッシュは"機能的"であり、表現やコードが異なる場合でも同等の候補を識別します。
ニューラルアーキテクチャ検索やアルゴリズム発見など、複数のAutoMLドメインで劇的な改善がなされている。
論文 参考訳(メタデータ) (2023-02-10T18:50:37Z) - MLGWSC-1: The first Machine Learning Gravitational-Wave Search Mock Data
Challenge [110.7678032481059]
第1回機械学習重力波探索モックデータチャレンジ(MLGWSC-1)の結果を示す。
この課題のために、参加するグループは、より現実的な雑音に埋め込まれた複雑さと持続期間が増大する二元ブラックホールの融合から重力波信号を特定する必要があった。
この結果から,現在の機械学習検索アルゴリズムは,限られたパラメータ領域においてすでに十分敏感である可能性が示唆された。
論文 参考訳(メタデータ) (2022-09-22T16:44:59Z) - An Adaptive Threshold for the Canny Edge Detection with Actor-Critic
Algorithm [0.0]
ディープラーニングに基づくオブジェクト検出アルゴリズムでは、検出能力は古典的バックグラウンドサブトラクション(BGS)アルゴリズムよりも優れている。
本稿では、時間的・空間的な情報を抽出できる前景時間融合ネットワーク(STFN)を提案する。
提案アルゴリズムは、LASIESTAとSBIデータセットの最新のディープラーニング手法よりも11.28%と18.33%高い。
論文 参考訳(メタデータ) (2022-09-19T01:15:32Z) - Semi-supervised 3D Object Detection via Temporal Graph Neural Networks [17.90796183565084]
3Dオブジェクト検出は、自動運転やその他のロボット工学応用において重要な役割を果たす。
本研究では,3次元物体検出器の半教師付き学習により,大量の未ラベルのクラウドビデオを活用することを提案する。
本手法は,難解な nuScenes と H3D ベンチマーク上での最先端検出性能を実現する。
論文 参考訳(メタデータ) (2022-02-01T02:06:54Z) - Applications of Signature Methods to Market Anomaly Detection [1.911678487931003]
本稿では,特徴抽出器としてのシグネチャやランダム化シグネチャの異常検出アルゴリズムへの応用について述べる。
暗号通貨市場からの取引データを用いて実生活のアプリケーションを示す。
この場合、F1スコアが最大88%のソーシャルネットワーク上で組織されたポンプとダンプの試行を特定できる。
論文 参考訳(メタデータ) (2022-01-07T13:05:43Z) - Oriented R-CNN for Object Detection [61.78746189807462]
本研究では、オブジェクト指向R-CNNと呼ばれる、効果的でシンプルなオブジェクト指向オブジェクト検出フレームワークを提案する。
第1段階では,高品質な指向型提案をほぼ無償で直接生成する指向型領域提案ネットワーク(指向RPN)を提案する。
第2段階は、R-CNNヘッダーで、興味のある領域(オブジェクト指向のRoI)を精製し、認識する。
論文 参考訳(メタデータ) (2021-08-12T12:47:43Z) - A DICOM Framework for Machine Learning Pipelines against Real-Time
Radiology Images [50.222197963803644]
Nifflerは、研究クラスタでの機械学習パイプラインの実行を可能にする統合フレームワークである。
ニフラーはDigital Imaging and Communications in Medicine (DICOM)プロトコルを使用して画像データの取得と保存を行っている。
我々は,そのアーキテクチャと3つのユースケースを提示する: リアルタイムに画像から下大静脈フィルターを検出すること,スキャナ利用の同定,およびスキャナクロックの校正。
論文 参考訳(メタデータ) (2020-04-16T21:06:49Z) - UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional
Variational Autoencoders [81.5490760424213]
データラベリングプロセスから学習することで、RGB-Dサリエンシ検出に不確実性を利用するための第1のフレームワーク(UCNet)を提案する。
そこで本研究では,サリエンシデータラベリングにヒントを得て,確率的RGB-Dサリエンシ検出ネットワークを提案する。
論文 参考訳(メタデータ) (2020-04-13T04:12:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。