Granger Causal Chain Discovery for Sepsis-Associated Derangements via
Continuous-Time Hawkes Processes
- URL: http://arxiv.org/abs/2209.04480v5
- Date: Tue, 23 May 2023 16:38:53 GMT
- Title: Granger Causal Chain Discovery for Sepsis-Associated Derangements via
Continuous-Time Hawkes Processes
- Authors: Song Wei, Yao Xie, Christopher S. Josef, Rishikesan Kamaleswaran
- Abstract summary: We develop a scalable two-phase gradient-based method to obtain a maximum surrogate-likelihood estimator.
Our method is extended to a data set of patients admitted to Grady hospital system in Atlanta, GA, USA, where the estimated GC graph identifies several highly interpretable GC chains that precede sepsis.
- Score: 10.410454851418548
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Modern health care systems are conducting continuous, automated surveillance
of the electronic medical record (EMR) to identify adverse events with
increasing frequency; however, many events such as sepsis do not have
elucidated prodromes (i.e., event chains) that can be used to identify and
intercept the adverse event early in its course. Clinically relevant and
interpretable results require a framework that can (i) infer temporal
interactions across multiple patient features found in EMR data (e.g., Labs,
vital signs, etc.) and (ii) identify patterns that precede and are specific to
an impending adverse event (e.g., sepsis). In this work, we propose a linear
multivariate Hawkes process model, coupled with ReLU link function, to recover
a Granger Causal (GC) graph with both exciting and inhibiting effects. We
develop a scalable two-phase gradient-based method to obtain a maximum
surrogate-likelihood estimator, which is shown to be effective via extensive
numerical simulation. Our method is subsequently extended to a data set of
patients admitted to Grady hospital system in Atlanta, GA, USA, where the
estimated GC graph identifies several highly interpretable GC chains that
precede sepsis. The code is available at
\url{https://github.com/SongWei-GT/two-phase-MHP}.
Related papers
- Explainable Spatio-Temporal GCNNs for Irregular Multivariate Time Series: Architecture and Application to ICU Patient Data [7.433698348783128]
We present XST-CNN (eXG-Temporal Graph Conal Neural Network), a novel architecture for processing heterogeneous and irregular Multi Time Series (MTS) data.
Our approach captures temporal and feature within a unifiedtemporal-temporal pipeline by leveraging a GCNN pipeline.
We evaluate XST-CNN using real-world Electronic Health Record data to predict Multidrug Resistance (MDR) in ICU patients.
arXiv Detail & Related papers (2024-11-01T22:53:17Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Sickle Cell Disease Severity Prediction from Percoll Gradient Images
using Graph Convolutional Networks [38.27767684024691]
Sickle cell disease (SCD) is a severe genetic hemoglobin disorder that results in premature destruction of red blood cells.
Our proposed method is the first computational approach for the difficult task of SCD severity prediction.
arXiv Detail & Related papers (2021-09-11T21:09:50Z) - MG-NET: Leveraging Pseudo-Imaging for Multi-Modal Metagenome Analysis [5.04905391284093]
We propose MG-Net, a self-supervised representation learning framework.
We show that MG-Net can learn robust representations from unlabeled data.
Experiments show that the learned features outperform current baseline metagenome representations.
arXiv Detail & Related papers (2021-07-21T05:53:01Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
We propose an uncertainty-guided dual-consistency learning network (UDC-Net) for semi-supervised COVID-19 lesion segmentation from CT images.
Our proposed UDC-Net improves the fully supervised method by 6.3% in Dice and outperforms other competitive semi-supervised approaches by significant margins.
arXiv Detail & Related papers (2021-04-07T16:23:35Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Large-scale Augmented Granger Causality (lsAGC) for Connectivity
Analysis in Complex Systems: From Computer Simulations to Functional MRI
(fMRI) [0.0]
We introduce large-scale Augmented Granger Causality (lsAGC) as a method for connectivity analysis in complex systems.
lsAGC algorithm combines dimension reduction with source time-series augmentation.
We quantitatively evaluate the performance of lsAGC on synthetic directional time-series networks with known ground truth.
arXiv Detail & Related papers (2021-01-10T01:44:48Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - Continuous Learning and Inference of Individual Probability of
SARS-CoV-2 Infection Based on Interaction Data [0.0]
This study presents a new approach to determine the likelihood of asymptomatic carriers of the SARS-CoV-2 virus by using interaction-based continuous learning and inference of individual probability (CLIIP) for contagious ranking.
Compared to traditional contact tracing methods, our approach significantly reduces the screening and quarantine required to search for the potential asymptomatic virus carriers by as much as 94%.
arXiv Detail & Related papers (2020-06-08T14:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.