Parameterized Diffusion Optimization enabled Autoregressive Ordinal Regression for Diabetic Retinopathy Grading
- URL: http://arxiv.org/abs/2507.04978v1
- Date: Mon, 07 Jul 2025 13:22:35 GMT
- Title: Parameterized Diffusion Optimization enabled Autoregressive Ordinal Regression for Diabetic Retinopathy Grading
- Authors: Qinkai Yu, Wei Zhou, Hantao Liu, Yanyu Xu, Meng Wang, Yitian Zhao, Huazhu Fu, Xujiong Ye, Yalin Zheng, Yanda Meng,
- Abstract summary: This work proposes a novel autoregressive ordinal regression method called AOR-DR.<n>We decompose the diabetic retinopathy grading task into a series of ordered steps by fusing the prediction of the previous steps with extracted image features.<n>We exploit the diffusion process to facilitate conditional probability modeling, enabling the direct use of continuous global image features for autoregression.
- Score: 53.11883409422728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a long-term complication of diabetes, diabetic retinopathy (DR) progresses slowly, potentially taking years to threaten vision. An accurate and robust evaluation of its severity is vital to ensure prompt management and care. Ordinal regression leverages the underlying inherent order between categories to achieve superior performance beyond traditional classification. However, there exist challenges leading to lower DR classification performance: 1) The uneven distribution of DR severity levels, characterized by a long-tailed pattern, adds complexity to the grading process. 2)The ambiguity in defining category boundaries introduces additional challenges, making the classification process more complex and prone to inconsistencies. This work proposes a novel autoregressive ordinal regression method called AOR-DR to address the above challenges by leveraging the clinical knowledge of inherent ordinal information in DR grading dataset settings. Specifically, we decompose the DR grading task into a series of ordered steps by fusing the prediction of the previous steps with extracted image features as conditions for the current prediction step. Additionally, we exploit the diffusion process to facilitate conditional probability modeling, enabling the direct use of continuous global image features for autoregression without relearning contextual information from patch-level features. This ensures the effectiveness of the autoregressive process and leverages the capabilities of pre-trained large-scale foundation models. Extensive experiments were conducted on four large-scale publicly available color fundus datasets, demonstrating our model's effectiveness and superior performance over six recent state-of-the-art ordinal regression methods. The implementation code is available at https://github.com/Qinkaiyu/AOR-DR.
Related papers
- Restoration Score Distillation: From Corrupted Diffusion Pretraining to One-Step High-Quality Generation [82.39763984380625]
We propose textitRestoration Score Distillation (RSD), a principled generalization of Denoising Score Distillation (DSD)<n>RSD accommodates a broader range of corruption types, such as blurred, incomplete, or low-resolution images.<n>It consistently surpasses its teacher model across diverse restoration tasks on both natural and scientific datasets.
arXiv Detail & Related papers (2025-05-19T17:21:03Z) - A Generative Framework for Causal Estimation via Importance-Weighted Diffusion Distillation [55.53426007439564]
Estimating individualized treatment effects from observational data is a central challenge in causal inference.<n>In inverse probability weighting (IPW) is a well-established solution to this problem, but its integration into modern deep learning frameworks remains limited.<n>We propose Importance-Weighted Diffusion Distillation (IWDD), a novel generative framework that combines the pretraining of diffusion models with importance-weighted score distillation.
arXiv Detail & Related papers (2025-05-16T17:00:52Z) - Enhancing DR Classification with Swin Transformer and Shifted Window Attention [9.99302279736049]
Diabetic retinopathy (DR) is a leading cause of blindness worldwide, underscoring the importance of early detection for effective treatment.<n>We propose a robust preprocessing pipeline incorporating image cropping, Contrast-Limited Adaptive Histogram Equalization (CLAHE), and targeted data augmentation to improve model generalization and resilience.<n>We validate our method on the Aptos and IDRiD datasets for multi-class DR classification, achieving accuracy rates of 89.65% and 97.40%, respectively.
arXiv Detail & Related papers (2025-04-20T13:23:20Z) - Domain Adaptive Diabetic Retinopathy Grading with Model Absence and Flowing Data [45.75724873443564]
Domain shift poses a significant challenge in clinical applications, e.g., Diabetic Retinopathy grading.<n>We propose a novel approach, Generative Unadversarial ExampleS (GUES), which enables adaptation from a data-centric perspective.
arXiv Detail & Related papers (2024-12-02T07:14:25Z) - Divergent Domains, Convergent Grading: Enhancing Generalization in Diabetic Retinopathy Grading [8.59772105902647]
Diabetic Retinopathy (DR) constitutes 5% of global blindness cases.
We introduce a novel deep learning method for achieving domain generalization (DG) in DR grading.
Our method demonstrates significant improvements over the strong Empirical Risk Minimization baseline.
arXiv Detail & Related papers (2024-11-04T21:09:24Z) - CLIP-DR: Textual Knowledge-Guided Diabetic Retinopathy Grading with Ranking-aware Prompting [48.47935559597376]
Diabetic retinopathy (DR) is a complication of diabetes and usually takes decades to reach sight-threatening levels.
Most current DR grading methods suffer from insufficient robustness to data variability.
We propose a novel DR grading framework CLIP-DR based on three observations.
arXiv Detail & Related papers (2024-07-04T17:14:18Z) - Generalizing to Unseen Domains in Diabetic Retinopathy Classification [8.59772105902647]
We study the problem of generalizing a model to unseen distributions or domains in diabetic retinopathy classification.
We propose a simple and effective domain generalization (DG) approach that achieves self-distillation in vision transformers.
We report the performance of several state-of-the-art DG methods on open-source DR classification datasets.
arXiv Detail & Related papers (2023-10-26T09:11:55Z) - Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral
Fracture Grading [72.45699658852304]
This paper proposes a novel approach to train a generative Diffusion Autoencoder model as an unsupervised feature extractor.
We model fracture grading as a continuous regression, which is more reflective of the smooth progression of fractures.
Importantly, the generative nature of our method allows us to visualize different grades of a given vertebra, providing interpretability and insight into the features that contribute to automated grading.
arXiv Detail & Related papers (2023-03-21T17:16:01Z) - Semi-Supervised Deep Regression with Uncertainty Consistency and
Variational Model Ensembling via Bayesian Neural Networks [31.67508478764597]
We propose a novel approach to semi-supervised regression, namely Uncertainty-Consistent Variational Model Ensembling (UCVME)
Our consistency loss significantly improves uncertainty estimates and allows higher quality pseudo-labels to be assigned greater importance under heteroscedastic regression.
Experiments show that our method outperforms state-of-the-art alternatives on different tasks and can be competitive with supervised methods that use full labels.
arXiv Detail & Related papers (2023-02-15T10:40:51Z) - A Multi-stage Transfer Learning Framework for Diabetic Retinopathy
Grading on Small Data [7.083438376194304]
Diabetic retinopathy (DR) is one of the major blindness-causing diseases currently known.
In this paper, we apply the idea of multi-stage transfer learning into the grading task of DR.
We present a class-balanced loss function in our work and adopt a simple and easy-to-implement training method for it.
arXiv Detail & Related papers (2021-09-24T08:39:13Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
Dynamic treatment regimes (DTRs) are personalized, adaptive, multi-stage treatment plans that adapt treatment decisions to an individual's initial features and to intermediate outcomes and features at each subsequent stage.
We propose a novel algorithm that, by carefully balancing exploration and exploitation, is guaranteed to achieve rate-optimal regret when the transition and reward models are linear.
arXiv Detail & Related papers (2020-05-06T13:03:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.