One-shot Federated Learning via Synthetic Distiller-Distillate Communication
- URL: http://arxiv.org/abs/2412.05186v1
- Date: Fri, 06 Dec 2024 17:05:34 GMT
- Title: One-shot Federated Learning via Synthetic Distiller-Distillate Communication
- Authors: Junyuan Zhang, Songhua Liu, Xinchao Wang,
- Abstract summary: One-shot Federated learning (FL) is a powerful technology facilitating collaborative training of machine learning models in a single round of communication.
We propose FedSD2C, a novel and practical one-shot FL framework designed to address these challenges.
- Score: 63.89557765137003
- License:
- Abstract: One-shot Federated learning (FL) is a powerful technology facilitating collaborative training of machine learning models in a single round of communication. While its superiority lies in communication efficiency and privacy preservation compared to iterative FL, one-shot FL often compromises model performance. Prior research has primarily focused on employing data-free knowledge distillation to optimize data generators and ensemble models for better aggregating local knowledge into the server model. However, these methods typically struggle with data heterogeneity, where inconsistent local data distributions can cause teachers to provide misleading knowledge. Additionally, they may encounter scalability issues with complex datasets due to inherent two-step information loss: first, during local training (from data to model), and second, when transferring knowledge to the server model (from model to inversed data). In this paper, we propose FedSD2C, a novel and practical one-shot FL framework designed to address these challenges. FedSD2C introduces a distiller to synthesize informative distillates directly from local data to reduce information loss and proposes sharing synthetic distillates instead of inconsistent local models to tackle data heterogeneity. Our empirical results demonstrate that FedSD2C consistently outperforms other one-shot FL methods with more complex and real datasets, achieving up to 2.6 the performance of the best baseline. Code: https://github.com/Carkham/FedSD2C
Related papers
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN [1.5749416770494706]
Federated Learning (FL) provides a privacy-preserving mechanism for distributed training of machine learning models on networked devices.
We propose FLIGAN, a novel approach to address the issue of data incompleteness in FL.
Our methodology adheres to FL's privacy requirements by generating synthetic data in a federated manner without sharing the actual data in the process.
arXiv Detail & Related papers (2024-03-25T16:49:38Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - Unlocking the Potential of Federated Learning: The Symphony of Dataset
Distillation via Deep Generative Latents [43.282328554697564]
We propose a highly efficient FL dataset distillation framework on the server side.
Unlike previous strategies, our technique enables the server to leverage prior knowledge from pre-trained deep generative models.
Our framework converges faster than the baselines because rather than the server trains on several sets of heterogeneous data distributions, it trains on a multi-modal distribution.
arXiv Detail & Related papers (2023-12-03T23:30:48Z) - FedHiSyn: A Hierarchical Synchronous Federated Learning Framework for
Resource and Data Heterogeneity [56.82825745165945]
Federated Learning (FL) enables training a global model without sharing the decentralized raw data stored on multiple devices to protect data privacy.
We propose a hierarchical synchronous FL framework, i.e., FedHiSyn, to tackle the problems of straggler effects and outdated models.
We evaluate the proposed framework based on MNIST, EMNIST, CIFAR10 and CIFAR100 datasets and diverse heterogeneous settings of devices.
arXiv Detail & Related papers (2022-06-21T17:23:06Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Federated Causal Discovery [74.37739054932733]
This paper develops a gradient-based learning framework named DAG-Shared Federated Causal Discovery (DS-FCD)
It can learn the causal graph without directly touching local data and naturally handle the data heterogeneity.
Extensive experiments on both synthetic and real-world datasets verify the efficacy of the proposed method.
arXiv Detail & Related papers (2021-12-07T08:04:12Z) - Data-Free Knowledge Distillation for Heterogeneous Federated Learning [31.364314540525218]
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data.
Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users.
We propose a data-free knowledge distillation approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner.
arXiv Detail & Related papers (2021-05-20T22:30:45Z) - FLaPS: Federated Learning and Privately Scaling [3.618133010429131]
Federated learning (FL) is a distributed learning process where the model is transferred to the devices that posses data.
We present Federated Learning and Privately Scaling (FLaPS) architecture, which improves scalability as well as the security and privacy of the system.
arXiv Detail & Related papers (2020-09-13T14:20:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.