Simple and Effective Gradient-Based Tuning of Sequence-to-Sequence
Models
- URL: http://arxiv.org/abs/2209.04683v1
- Date: Sat, 10 Sep 2022 14:52:41 GMT
- Title: Simple and Effective Gradient-Based Tuning of Sequence-to-Sequence
Models
- Authors: Jared Lichtarge and Chris Alberti and Shankar Kumar
- Abstract summary: Huge cost of training larger language models can make tuning them prohibitively expensive.
We apply gradient-based hyper- parameter optimization to sequence-to-sequence tasks for the first time.
We show efficiency and performance gains over strong baselines for both Neural Machine Translation and Natural Language Understanding (NLU) tasks.
- Score: 8.370770440898454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent trends towards training ever-larger language models have substantially
improved machine learning performance across linguistic tasks. However, the
huge cost of training larger models can make tuning them prohibitively
expensive, motivating the study of more efficient methods. Gradient-based
hyper-parameter optimization offers the capacity to tune hyper-parameters
during training, yet has not previously been studied in a sequence-to-sequence
setting. We apply a simple and general gradient-based hyperparameter
optimization method to sequence-to-sequence tasks for the first time,
demonstrating both efficiency and performance gains over strong baselines for
both Neural Machine Translation and Natural Language Understanding (NLU) tasks
(via T5 pretraining). For translation, we show the method generalizes across
language pairs, is more efficient than Bayesian hyper-parameter optimization,
and that learned schedules for some hyper-parameters can out-perform even
optimal constant-valued tuning. For T5, we show that learning hyper-parameters
during pretraining can improve performance across downstream NLU tasks. When
learning multiple hyper-parameters concurrently, we show that the global
learning rate can follow a schedule over training that improves performance and
is not explainable by the `short-horizon bias' of greedy methods
\citep{wu2018}. We release the code used to facilitate further research.
Related papers
- Optimization Hyper-parameter Laws for Large Language Models [56.322914260197734]
We present Opt-Laws, a framework that captures the relationship between hyper- parameters and training outcomes.
Our validation across diverse model sizes and data scales demonstrates Opt-Laws' ability to accurately predict training loss.
This approach significantly reduces computational costs while enhancing overall model performance.
arXiv Detail & Related papers (2024-09-07T09:37:19Z) - Dynamic Adapter Meets Prompt Tuning: Parameter-Efficient Transfer Learning for Point Cloud Analysis [51.14136878142034]
Point cloud analysis has achieved outstanding performance by transferring point cloud pre-trained models.
Existing methods for model adaptation usually update all model parameters, which is inefficient as it relies on high computational costs.
In this paper, we aim to study parameter-efficient transfer learning for point cloud analysis with an ideal trade-off between task performance and parameter efficiency.
arXiv Detail & Related papers (2024-03-03T08:25:04Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - Hyper-Learning for Gradient-Based Batch Size Adaptation [2.944323057176686]
Scheduling the batch size to increase is an effective strategy to control noise when training deep neural networks.
We introduce Arbiter as a new hyper-optimization algorithm to perform batch size adaptations for learnable schedulings.
We demonstrate Arbiter's effectiveness in several illustrative experiments.
arXiv Detail & Related papers (2022-05-17T11:01:14Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
Few-shot in-context learning (ICL) incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made.
parameter-efficient fine-tuning offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task.
In this paper, we rigorously compare few-shot ICL and parameter-efficient fine-tuning and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs.
arXiv Detail & Related papers (2022-05-11T17:10:41Z) - Scalable One-Pass Optimisation of High-Dimensional Weight-Update
Hyperparameters by Implicit Differentiation [0.0]
We develop an approximate hypergradient-based hyper parameter optimiser.
It requires only one training episode, with no restarts.
We also provide a motivating argument for convergence to the true hypergradient.
arXiv Detail & Related papers (2021-10-20T09:57:57Z) - How much progress have we made in neural network training? A New
Evaluation Protocol for Benchmarking Optimizers [86.36020260204302]
We propose a new benchmarking protocol to evaluate both end-to-end efficiency and data-addition training efficiency.
A human study is conducted to show that our evaluation protocol matches human tuning behavior better than the random search.
We then apply the proposed benchmarking framework to 7s and various tasks, including computer vision, natural language processing, reinforcement learning, and graph mining.
arXiv Detail & Related papers (2020-10-19T21:46:39Z) - Tasks, stability, architecture, and compute: Training more effective
learned optimizers, and using them to train themselves [53.37905268850274]
We introduce a new, hierarchical, neural network parameterized, hierarchical with access to additional features such as validation loss to enable automatic regularization.
Most learneds have been trained on only a single task, or a small number of tasks.
We train ours on thousands of tasks, making use of orders of magnitude more compute, resulting in generalizes that perform better to unseen tasks.
arXiv Detail & Related papers (2020-09-23T16:35:09Z) - Multi-level Training and Bayesian Optimization for Economical
Hyperparameter Optimization [12.92634461859467]
In this paper, we develop an effective approach to reducing the total amount of required training time for Hyperparameter Optimization.
We propose a truncated additive Gaussian process model to calibrate approximate performance measurements generated by light training.
Based on the model, a sequential model-based algorithm is developed to generate the performance profile of the configuration space as well as find optimal ones.
arXiv Detail & Related papers (2020-07-20T09:03:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.