論文の概要: A Survey in Automatic Irony Processing: Linguistic, Cognitive, and
Multi-X Perspectives
- arxiv url: http://arxiv.org/abs/2209.04712v1
- Date: Sat, 10 Sep 2022 17:03:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-13 12:55:42.994032
- Title: A Survey in Automatic Irony Processing: Linguistic, Cognitive, and
Multi-X Perspectives
- Title(参考訳): 自動皮肉処理に関する調査 : 言語的・認知的・多元的視点
- Authors: Qingcheng Zeng, An-Ran Li
- Abstract要約: 我々は、計算皮肉、言語理論や認知科学からの知見、下流のNLPタスクとの相互作用、新たに提案されたマルチXアイロン処理の観点からの総合的な概要を提供する。
- 参考スコア(独自算出の注目度): 1.6244541005112747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Irony is a ubiquitous figurative language in daily communication. Previously,
many researchers have approached irony from linguistic, cognitive science, and
computational aspects. Recently, some progress have been witnessed in automatic
irony processing due to the rapid development in deep neural models in natural
language processing (NLP). In this paper, we will provide a comprehensive
overview of computational irony, insights from linguistic theory and cognitive
science, as well as its interactions with downstream NLP tasks and newly
proposed multi-X irony processing perspectives.
- Abstract(参考訳): 皮肉は日常コミュニケーションにおけるユビキタスな表現言語である。
これまで多くの研究者が、言語学、認知科学、計算的な側面から皮肉にアプローチしてきた。
近年,自然言語処理(NLP)におけるディープニューラルネットワークの急速な発展により,自動アイロン処理の進歩が見られた。
本稿では,計算の皮肉,言語理論と認知科学からの洞察,下流のnlpタスクとのインタラクション,そして新たに提案されたマルチxの皮肉処理の観点について概観する。
関連論文リスト
- A Survey on Lexical Ambiguity Detection and Word Sense Disambiguation [0.0]
本稿では自然言語処理(NLP)分野における言語におけるあいまいさの理解と解決に焦点を当てた手法について検討する。
ディープラーニング技術から、WordNetのような語彙的リソースや知識グラフの活用まで、さまざまなアプローチを概説している。
本研究は, 感覚アノテートコーパスの不足, 非公式な臨床テキストの複雑さなど, この分野における永続的な課題を明らかにした。
論文 参考訳(メタデータ) (2024-03-24T12:58:48Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - Visually Grounded Language Learning: a review of language games,
datasets, tasks, and models [60.2604624857992]
多くのVision+Language (V+L)タスクは、視覚的モダリティでシンボルをグラウンドできるモデルを作成することを目的として定義されている。
本稿では,V+L分野において提案されるいくつかの課題とモデルについて,系統的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-12-05T02:17:29Z) - Analysis of the Evolution of Advanced Transformer-Based Language Models:
Experiments on Opinion Mining [0.5735035463793008]
本稿では,最先端のトランスフォーマーに基づく言語モデルの意見マイニングにおける挙動について検討する。
私たちの比較研究は、フォーカスするアプローチに関して、プロダクションエンジニアがリードし、道を開く方法を示しています。
論文 参考訳(メタデータ) (2023-08-07T01:10:50Z) - DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning [89.92601337474954]
プラグマティック推論は、実生活における会話でしばしば起こる暗黙の意味を解読する上で重要な役割を担っている。
そこで我々は,現実的な推論と会話理解の場所に関するマシンの能力のベンチマークを目的とした,新しい挑戦であるDiPlomatを紹介した。
論文 参考訳(メタデータ) (2023-06-15T10:41:23Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
自己教師付き表現学習法は、幅広いタスクやドメインに利益をもたらす単一の普遍的モデルを約束する。
音声表現学習は、生成的、コントラスト的、予測的という3つの主要なカテゴリで同様の進歩を経験している。
本稿では,自己指導型音声表現学習のアプローチと,他の研究領域との関係について述べる。
論文 参考訳(メタデータ) (2022-05-21T16:52:57Z) - Visualizing and Explaining Language Models [0.0]
自然言語処理はコンピュータビジョンの後、人工知能の第2の分野となった。
本稿では,NLPビジュアライゼーションにおいて最もポピュラーなDeep Learningの手法について紹介し,解釈可能性と説明可能性に着目した。
論文 参考訳(メタデータ) (2022-04-30T17:23:33Z) - Morphological Processing of Low-Resource Languages: Where We Are and
What's Next [23.7371787793763]
注釈付きリソースが最小か全くない言語に適したアプローチに焦点を合わせます。
我々は、言語の形態を原文だけで理解する、論理的な次の課題に取り組む準備が整っていると論じる。
論文 参考訳(メタデータ) (2022-03-16T19:47:04Z) - Emergence of Machine Language: Towards Symbolic Intelligence with Neural
Networks [73.94290462239061]
本稿では、ニューラルネットワークを用いてシンボルとコネクショナリズムの原理を組み合わせることで、離散表現を導出することを提案する。
対話型環境とタスクを設計することにより、機械が自発的で柔軟でセマンティックな言語を生成できることを実証した。
論文 参考訳(メタデータ) (2022-01-14T14:54:58Z) - Crossing the Conversational Chasm: A Primer on Multilingual
Task-Oriented Dialogue Systems [51.328224222640614]
大規模な学習済みニューラルネットワークモデルに基づく最新のTODモデルは、データ空腹です。
ToDのユースケースのデータ取得は高価で面倒だ。
論文 参考訳(メタデータ) (2021-04-17T15:19:56Z) - Human Sentence Processing: Recurrence or Attention? [3.834032293147498]
最近導入されたTransformerアーキテクチャは、多くの自然言語処理タスクにおいてRNNよりも優れています。
本研究では,トランスフォーマーとRNNをベースとした言語モデルを用いて,人間の読取力を計測する能力の比較を行った。
論文 参考訳(メタデータ) (2020-05-19T14:17:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。