論文の概要: Analyzing Wearables Dataset to Predict ADLs and Falls: A Pilot Study
- arxiv url: http://arxiv.org/abs/2209.04785v1
- Date: Sun, 11 Sep 2022 04:41:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-13 14:09:43.335093
- Title: Analyzing Wearables Dataset to Predict ADLs and Falls: A Pilot Study
- Title(参考訳): ウェアラブルのデータセットからADLとフォールを予測:パイロット研究
- Authors: Rajbinder Kaur, Rohini Sharma
- Abstract要約: 本稿では,日常の生活と転倒の行動を認識するシステムの評価に使用できる,30のウェアラブルベースのデータセットを網羅的にレビューする。
5つの機械学習手法を用いたSisFallデータセットの比較分析をピソンで行う。
本研究から得られた結果は,KNNが他の機械学習手法よりも精度,精度,リコールの点で優れていることを証明している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Healthcare is an important aspect of human life. Use of technologies in
healthcare has increased manifolds after the pandemic. Internet of Things based
systems and devices proposed in literature can help elders, children and adults
facing/experiencing health problems. This paper exhaustively reviews
thirty-nine wearable based datasets which can be used for evaluating the system
to recognize Activities of Daily Living and Falls. A comparative analysis on
the SisFall dataset using five machine learning methods i.e., Logistic
Regression, Linear Discriminant Analysis, K-Nearest Neighbor, Decision Tree and
Naive Bayes is performed in python. The dataset is modified in two ways, in
first all the attributes present in dataset are used as it is and labelled in
binary form. In second, magnitude of three axes(x,y,z) for three sensors value
are computed and then used in experiment with label attribute. The experiments
are performed on one subject, ten subjects and all the subjects and compared in
terms of accuracy, precision and recall. The results obtained from this study
proves that KNN outperforms other machine learning methods in terms of
accuracy, precision and recall. It is also concluded that personalization of
data improves accuracy.
- Abstract(参考訳): 医療は人間生活の重要な側面である。
医療における技術の利用は、パンデミック後に多様体を増やした。
文学で提案されたモノのインターネットベースのシステムとデバイスは、高齢者、子供、成人が健康問題に直面したり経験したりするのに役立つ。
本稿では,日常生活と転倒の活動を認識できるシステムを評価するために使用できる,ウェアラブルベースデータセット39点について概説する。
5つの機械学習手法、すなわちロジスティック回帰、線形判別分析、k-ネアレスト近傍、決定木、ナイーブベイズを用いたシスフォールデータセットの比較分析をpythonで行った。
データセットは2つの方法で変更され、最初はデータセットに存在するすべての属性が、バイナリ形式でラベル付けされて使用される。
次に、3つのセンサ値に対する3つの軸(x,y,z)の大きさを計算し、ラベル属性の実験に使用する。
実験は1つの被験者、10つの被験者と全ての被験者で行われ、精度、精度、リコールの点で比較される。
本研究から得られた結果は,KNNが他の機械学習手法よりも精度,精度,リコールの点で優れていることを証明している。
また,データのパーソナライズが精度を向上させると結論づけた。
関連論文リスト
- On the Performance of Imputation Techniques for Missing Values on Healthcare Datasets [0.0]
値やデータの欠落は、実世界のデータセット、特に医療データの一般的な特徴のひとつだ。
本研究は, 平均計算法, 中間計算法, 最終観測法 (LOCF) 計算法, K-Nearest Neighbor (KNN) 計算法, 補間計算法, ミスフォレスト計算法, 連鎖方程式による多重計算法の比較である。
その結果,ミスフォレスト・インキュベーションが最善であり,MICEインキュベーションが最善であることがわかった。
論文 参考訳(メタデータ) (2024-03-13T18:07:17Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
医療画像データセットは、コンピュータ支援診断、治療計画、医学研究に使用される訓練モデルに不可欠である。
データ分散のばらつき、データの不足、ジェネリックイメージから事前トレーニングされたモデルを使用する場合の転送学習の問題などである。
本稿では,データ不足と分散不均衡の影響を軽減するために,一連の手法を統合したシームズニューラルネットワークに基づく手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T16:59:27Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Causal thinking for decision making on Electronic Health Records: why
and how [0.0]
データ駆動決定には因果思考が必要である。
実生活の患者記録から有効な意思決定を支援するための,ステップバイステップのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T08:17:00Z) - A Pretrainer's Guide to Training Data: Measuring the Effects of Data
Age, Domain Coverage, Quality, & Toxicity [84.6421260559093]
この研究は、テキスト事前学習に関する文書化されていない直観を検証、定量化、公開するための最大の実験である。
以上の結果から,トレーニングデータをフィルタリングする一大ソリューションが存在しないことが示唆された。
論文 参考訳(メタデータ) (2023-05-22T15:57:53Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
このコントリビューションは、トレーニングデータを統計的にキュレートし、人間の身体的特性がHARのパフォーマンスにどの程度影響するかを評価する。
時系列HARのセンサ,アクティビティ,記録の異なる2つのHARデータセット上で,最先端の畳み込みニューラルネットワークの性能を評価する。
論文 参考訳(メタデータ) (2023-01-19T12:33:50Z) - Predicting Seriousness of Injury in a Traffic Accident: A New Imbalanced
Dataset and Benchmark [62.997667081978825]
本稿では,交通事故における傷害の重大性を予測するために,機械学習アルゴリズムの性能を評価する新しいデータセットを提案する。
データセットは、英国運輸省から公開されているデータセットを集約することで作成される。
論文 参考訳(メタデータ) (2022-05-20T21:15:26Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - A Real Use Case of Semi-Supervised Learning for Mammogram Classification
in a Local Clinic of Costa Rica [0.5541644538483946]
ディープラーニングモデルのトレーニングには、かなりの量のラベル付きイメージが必要です。
多くの公開データセットが、さまざまな病院や診療所のデータで構築されている。
ラベルなしデータを利用した半教師付き深層学習手法であるMixMatchを提案し評価した。
論文 参考訳(メタデータ) (2021-07-24T22:26:50Z) - Explainable Multi-class Classification of Medical Data [0.9137554315375922]
大規模医療データセットの多クラス分類について解説する。
この研究では、SVM(Support Vector Machine)、Na"ive Bayes、Gradient Boosting、Decision Trees、Random Forest、Logistic Regressionの6つのアルゴリズムが使用されている。
本研究では,23の薬物機能を用いて6つの応用学習アルゴリズムのうち5つのリコールを改善することを示した。
論文 参考訳(メタデータ) (2020-12-26T18:56:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。