論文の概要: SELTO: Sample-Efficient Learned Topology Optimization
- arxiv url: http://arxiv.org/abs/2209.05098v1
- Date: Mon, 12 Sep 2022 09:02:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-13 12:38:03.084748
- Title: SELTO: Sample-Efficient Learned Topology Optimization
- Title(参考訳): SELTO: サンプル効率の良い学習トポロジ最適化
- Authors: S\"oren Dittmer, David Erzmann, Henrik Harms, Peter Maass
- Abstract要約: トポロジ最適化のためのサンプル効率のよいディープラーニング戦略を提案する。
我々のエンドツーエンドアプローチは教師あり、物理ベースの前処理と同変ネットワークを含んでいる。
ディープラーニングパイプラインの異なるコンポーネントが、必要なトレーニングサンプルの数に与える影響を分析します。
- 参考スコア(独自算出の注目度): 2.2366638308792735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a sample-efficient deep learning strategy for topology
optimization. Our end-to-end approach is supervised and includes physics-based
preprocessing and equivariant networks. We analyze how different components of
our deep learning pipeline influence the number of required training samples
via a large-scale comparison. The results demonstrate that including physical
concepts not only drastically improves the sample efficiency but also the
predictions' physical correctness. Finally, we publish two topology
optimization datasets containing problems and corresponding ground truth
solutions. We are confident that these datasets will improve comparability and
future progress in the field.
- Abstract(参考訳): トポロジー最適化のためのサンプル効率のよいディープラーニング戦略を提案する。
エンドツーエンドのアプローチは監視され、物理ベースの前処理と等価ネットワークが含まれています。
ディープラーニングパイプラインのさまざまなコンポーネントが,必要なトレーニングサンプル数に与える影響を,大規模比較によって分析します。
その結果, 物理概念を含めれば, サンプル効率が大幅に向上するだけでなく, 予測の正確性も向上することがわかった。
最後に,問題と対応する真理解を含む2つのトポロジ最適化データセットを公表する。
これらのデータセットが、コンパラビリティとこの分野の今後の進歩を改善すると確信しています。
関連論文リスト
- A Bayesian Approach to Data Point Selection [24.98069363998565]
データポイントの選択(DPS)は、ディープラーニングにおいて重要なトピックになりつつある。
既存のDPSへのアプローチは、主にバイレベル最適化(BLO)の定式化に基づいている。
DPSに対する新しいベイズ的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-06T09:04:13Z) - FLOPS: Forward Learning with OPtimal Sampling [1.694989793927645]
勾配に基づく計算手法は、最近、クエリとも呼ばれる前方通過のみによる学習に焦点が当てられている。
従来の前方学習はモンテカルロサンプリングによる正確な勾配推定のために各データポイントで膨大なクエリを消費する。
本稿では,評価精度と計算効率のバランスを良くするために,訓練中の各データに対して最適なクエリ数を割り当てることを提案する。
論文 参考訳(メタデータ) (2024-10-08T12:16:12Z) - Dissecting Deep RL with High Update Ratios: Combatting Value Divergence [21.282292112642747]
ネットワークパラメータをリセットすることなく、深層強化学習アルゴリズムが学習能力を維持できることを示す。
我々は,大規模な更新率での学習を可能にする,単純な単球正規化を採用している。
論文 参考訳(メタデータ) (2024-03-09T19:56:40Z) - Efficient Grammatical Error Correction Via Multi-Task Training and
Optimized Training Schedule [55.08778142798106]
原文と修正文のアライメントを利用する補助タスクを提案する。
我々は,各タスクをシーケンス・ツー・シーケンス問題として定式化し,マルチタスク・トレーニングを行う。
トレーニングに使用されるデータセットの順序や、データセット内の個々のインスタンスでさえ、最終的なパフォーマンスに重要な影響を与える可能性があることが分かりました。
論文 参考訳(メタデータ) (2023-11-20T14:50:12Z) - Beyond Imitation: Leveraging Fine-grained Quality Signals for Alignment [105.34140537748546]
我々はFIGAという改良されたアライメント手法を提案し、従来の手法とは異なり、良質な応答と悪質な応答の対比から導出されるきめ細かい品質信号を取り込む。
まず、初期応答とそれに対応する修正データセットをペアリングする精巧なアライメントデータセットをキュレートする。
第2に,LLMの微粒な品質信号を利用してアライメントの学習を指導する新たな損失関数を考案する。
論文 参考訳(メタデータ) (2023-11-07T15:36:40Z) - Dataset Distillation: A Comprehensive Review [76.26276286545284]
データセット蒸留(DD)は、トレーニングされたモデルが元のデータセットでトレーニングされたデータセットに匹敵するパフォーマンスを得るために、合成サンプルを含むはるかに小さなデータセットを導出することを目的としている。
本稿ではDDの最近の進歩とその応用について概説する。
論文 参考訳(メタデータ) (2023-01-17T17:03:28Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
対象データに事前学習されたモデルを微調整することは、多くのディープラーニングアプリケーションで広く利用されている。
近年の研究では、スクラッチからのトレーニングが、この事前トレーニング戦略に比較して、最終的なパフォーマンスを示すことが実証されている。
本稿では,対象タスクの一般化を改善するために,事前学習データからサブセットを選択する新しい選択戦略を提案する。
論文 参考訳(メタデータ) (2021-11-24T06:18:32Z) - Deep Optimized Priors for 3D Shape Modeling and Reconstruction [38.79018852887249]
3Dモデリングと再構築のための新しい学習フレームワークを紹介します。
提案手法は,事前訓練によって制約された障壁を効果的に破壊することを示す。
論文 参考訳(メタデータ) (2020-12-14T03:56:31Z) - Advanced Dropout: A Model-free Methodology for Bayesian Dropout
Optimization [62.8384110757689]
ディープニューラルネットワーク(DNN)の現実的応用において、ユビキタスなオーバーフィッティングが存在する
先進的なドロップアウト手法は、パラメトリック先行でモデルフリーで容易に実装された分布を適用し、ドロップアウト率を適応的に調整する。
7つのコンピュータビジョンデータセットにおける9つのドロップアウト手法に対する高度なドロップアウトの有効性を評価する。
論文 参考訳(メタデータ) (2020-10-11T13:19:58Z) - Dynamic Scale Training for Object Detection [111.33112051962514]
本稿では,オブジェクト検出におけるスケール変動問題を軽減するために,動的スケールトレーニングパラダイム(DST)を提案する。
提案したDSTのスケール変動処理に対する有効性を示す実験結果を得た。
推論オーバーヘッドを導入せず、一般的な検出設定のための無料ランチとして機能する。
論文 参考訳(メタデータ) (2020-04-26T16:48:17Z) - Bayesian Meta-Prior Learning Using Empirical Bayes [3.666114237131823]
本稿では,情報的事前の欠如とパラメータ学習率の制御能力に対処する階層的経験ベイズ手法を提案する。
本手法は,データ自体から経験的メタプライヤを学習し,その学習率を1次および2次の特徴の分離に利用する。
スパースデータの最適化は、しばしば課題となるため、私たちの発見は有望です。
論文 参考訳(メタデータ) (2020-02-04T05:08:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。