DUET: A Tuning-Free Device-Cloud Collaborative Parameters Generation Framework for Efficient Device Model Generalization
- URL: http://arxiv.org/abs/2209.05227v5
- Date: Sun, 01 Dec 2024 16:50:02 GMT
- Title: DUET: A Tuning-Free Device-Cloud Collaborative Parameters Generation Framework for Efficient Device Model Generalization
- Authors: Zheqi Lv, Wenqiao Zhang, Shengyu Zhang, Kun Kuang, Feng Wang, Yongwei Wang, Zhengyu Chen, Tao Shen, Hongxia Yang, Beng Chin Ooi, Fei Wu,
- Abstract summary: Device Model Generalization (DMG) is a practical yet under-investigated research topic for on-device machine learning applications.
We propose an efficient Device-cloUd collaborative parametErs generaTion framework DUET.
- Score: 66.27399823422665
- License:
- Abstract: Device Model Generalization (DMG) is a practical yet under-investigated research topic for on-device machine learning applications. It aims to improve the generalization ability of pre-trained models when deployed on resource-constrained devices, such as improving the performance of pre-trained cloud models on smart mobiles. While quite a lot of works have investigated the data distribution shift across clouds and devices, most of them focus on model fine-tuning on personalized data for individual devices to facilitate DMG. Despite their promising, these approaches require on-device re-training, which is practically infeasible due to the overfitting problem and high time delay when performing gradient calculation on real-time data. In this paper, we argue that the computational cost brought by fine-tuning can be rather unnecessary. We consequently present a novel perspective to improving DMG without increasing computational cost, i.e., device-specific parameter generation which directly maps data distribution to parameters. Specifically, we propose an efficient Device-cloUd collaborative parametErs generaTion framework DUET. DUET is deployed on a powerful cloud server that only requires the low cost of forwarding propagation and low time delay of data transmission between the device and the cloud. By doing so, DUET can rehearse the device-specific model weight realizations conditioned on the personalized real-time data for an individual device. Importantly, our DUET elegantly connects the cloud and device as a 'duet' collaboration, frees the DMG from fine-tuning, and enables a faster and more accurate DMG paradigm. We conduct an extensive experimental study of DUET on three public datasets, and the experimental results confirm our framework's effectiveness and generalisability for different DMG tasks.
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - Dual-Model Distillation for Efficient Action Classification with Hybrid Edge-Cloud Solution [1.8029479474051309]
We design a hybrid edge-cloud solution that leverages the efficiency of smaller models for local processing while deferring to larger, more accurate cloud-based models when necessary.
Specifically, we propose a novel unsupervised data generation method, Dual-Model Distillation (DMD), to train a lightweight switcher model that can predict when the edge model's output is uncertain.
Experimental results on the action classification task show that our framework not only requires less computational overhead, but also improves accuracy compared to using a large model alone.
arXiv Detail & Related papers (2024-10-16T02:06:27Z) - Backpropagation-Free Multi-modal On-Device Model Adaptation via Cloud-Device Collaboration [37.456185990843515]
We introduce a Universal On-Device Multi-modal Model Adaptation Framework.
The framework features the Fast Domain Adaptor (FDA) hosted in the cloud, providing tailored parameters for the Lightweight Multi-modal Model on devices.
Our contributions represent a pioneering solution for on-Device Multi-modal Model Adaptation (DMMA)
arXiv Detail & Related papers (2024-05-21T14:42:18Z) - Efficient Asynchronous Federated Learning with Sparsification and
Quantization [55.6801207905772]
Federated Learning (FL) is attracting more and more attention to collaboratively train a machine learning model without transferring raw data.
FL generally exploits a parameter server and a large number of edge devices during the whole process of the model training.
We propose TEASQ-Fed to exploit edge devices to asynchronously participate in the training process by actively applying for tasks.
arXiv Detail & Related papers (2023-12-23T07:47:07Z) - Cloud-Device Collaborative Adaptation to Continual Changing Environments
in the Real-world [20.547119604004774]
We propose a new learning paradigm of Cloud-Device Collaborative Continual Adaptation, which encourages collaboration between cloud and device.
We also propose an Uncertainty-based Visual Prompt Adapted (U-VPA) teacher-student model to transfer the generalization capability of the large model on the cloud to the device model.
Our proposed U-VPA teacher-student framework outperforms previous state-of-the-art test time adaptation and device-cloud collaboration methods.
arXiv Detail & Related papers (2022-12-02T05:02:36Z) - Federated Split GANs [12.007429155505767]
We propose an alternative approach to train ML models in user's devices themselves.
We focus on GANs (generative adversarial networks) and leverage their inherent privacy-preserving attribute.
Our system preserves data privacy, keeps a short training time, and yields same accuracy of model training in unconstrained devices.
arXiv Detail & Related papers (2022-07-04T23:53:47Z) - Dynamic Network-Assisted D2D-Aided Coded Distributed Learning [59.29409589861241]
We propose a novel device-to-device (D2D)-aided coded federated learning method (D2D-CFL) for load balancing across devices.
We derive an optimal compression rate for achieving minimum processing time and establish its connection with the convergence time.
Our proposed method is beneficial for real-time collaborative applications, where the users continuously generate training data.
arXiv Detail & Related papers (2021-11-26T18:44:59Z) - Device-Cloud Collaborative Learning for Recommendation [50.01289274123047]
We propose a novel MetaPatch learning approach on the device side to efficiently achieve "thousands of people with thousands of models" given a centralized cloud model.
With billions of updated personalized device models, we propose a "model-over-models" distillation algorithm, namely MoMoDistill, to update the centralized cloud model.
arXiv Detail & Related papers (2021-04-14T05:06:59Z) - Fast-Convergent Federated Learning [82.32029953209542]
Federated learning is a promising solution for distributing machine learning tasks through modern networks of mobile devices.
We propose a fast-convergent federated learning algorithm, called FOLB, which performs intelligent sampling of devices in each round of model training.
arXiv Detail & Related papers (2020-07-26T14:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.