Model interpretation using improved local regression with variable
importance
- URL: http://arxiv.org/abs/2209.05371v1
- Date: Mon, 12 Sep 2022 16:22:59 GMT
- Title: Model interpretation using improved local regression with variable
importance
- Authors: Gilson Y. Shimizu, Rafael Izbicki and Andre C. P. L. F. de Carvalho
- Abstract summary: This article introduces two new interpretability methods, namely VarImp and SupClus.
VarImp generates explanations for each instance and can be applied to datasets with more complex relationships.
SupClus interprets clusters of instances with similar explanations and can be applied to simpler datasets.
- Score: 3.1690891866882236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fundamental question on the use of ML models concerns the explanation of
their predictions for increasing transparency in decision-making. Although
several interpretability methods have emerged, some gaps regarding the
reliability of their explanations have been identified. For instance, most
methods are unstable (meaning that they give very different explanations with
small changes in the data), and do not cope well with irrelevant features (that
is, features not related to the label). This article introduces two new
interpretability methods, namely VarImp and SupClus, that overcome these issues
by using local regressions fits with a weighted distance that takes into
account variable importance. Whereas VarImp generates explanations for each
instance and can be applied to datasets with more complex relationships,
SupClus interprets clusters of instances with similar explanations and can be
applied to simpler datasets where clusters can be found. We compare our methods
with state-of-the art approaches and show that it yields better explanations
according to several metrics, particularly in high-dimensional problems with
irrelevant features, as well as when the relationship between features and
target is non-linear.
Related papers
- A Critical Assessment of Interpretable and Explainable Machine Learning for Intrusion Detection [0.0]
We study the use of overly complex and opaque ML models, unaccounted data imbalances and correlated features, inconsistent influential features across different explanation methods, and the implausible utility of explanations.
Specifically, we advise avoiding complex opaque models such as Deep Neural Networks and instead using interpretable ML models such as Decision Trees.
We find that feature-based model explanations are most often inconsistent across different settings.
arXiv Detail & Related papers (2024-07-04T15:35:42Z) - Context-aware feature attribution through argumentation [0.0]
We define a novel feature attribution framework called Context-Aware Feature Attribution Through Argumentation (CA-FATA)
Our framework harnesses the power of argumentation by treating each feature as an argument that can either support, attack or neutralize a prediction.
arXiv Detail & Related papers (2023-10-24T20:02:02Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - Invariant Causal Mechanisms through Distribution Matching [86.07327840293894]
In this work we provide a causal perspective and a new algorithm for learning invariant representations.
Empirically we show that this algorithm works well on a diverse set of tasks and in particular we observe state-of-the-art performance on domain generalization.
arXiv Detail & Related papers (2022-06-23T12:06:54Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
We propose a novel approach to identify meaningful and independent factors of variation in a dataset.
Our method involves two separate latent subspaces for the target property and the remaining input information.
We demonstrate on synthetic and molecular data that our approach identifies more meaningful factors which lead to sparser and more interpretable models.
arXiv Detail & Related papers (2021-11-25T17:33:12Z) - Multivariate Data Explanation by Jumping Emerging Patterns Visualization [78.6363825307044]
We present VAX (multiVariate dAta eXplanation), a new VA method to support the identification and visual interpretation of patterns in multivariate data sets.
Unlike the existing similar approaches, VAX uses the concept of Jumping Emerging Patterns to identify and aggregate several diversified patterns, producing explanations through logic combinations of data variables.
arXiv Detail & Related papers (2021-06-21T13:49:44Z) - Triplot: model agnostic measures and visualisations for variable
importance in predictive models that take into account the hierarchical
correlation structure [3.0036519884678894]
We propose new methods to support model analysis by exploiting the information about the correlation between variables.
We show how to analyze groups of variables (aspects) both when they are proposed by the user and when they should be determined automatically.
We also present the new type of model visualisation, triplot, which exploits a hierarchical structure of variable grouping to produce a high information density model visualisation.
arXiv Detail & Related papers (2021-04-07T21:29:03Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z) - $\ell_0$-based Sparse Canonical Correlation Analysis [7.073210405344709]
Canonical Correlation Analysis (CCA) models are powerful for studying the associations between two sets of variables.
Despite their success, CCA models may break if the number of variables in either of the modalities exceeds the number of samples.
Here, we propose $ell_0$-CCA, a method for learning correlated representations based on sparse subsets of two observed modalities.
arXiv Detail & Related papers (2020-10-12T11:44:15Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.