Experimentally-realizable $\mathcal{PT}$ phase transitions in
reflectionless quantum scattering
- URL: http://arxiv.org/abs/2209.05426v1
- Date: Mon, 12 Sep 2022 17:30:58 GMT
- Title: Experimentally-realizable $\mathcal{PT}$ phase transitions in
reflectionless quantum scattering
- Authors: Micheline B. Soley, Carl M. Bender, A. Douglas Stone
- Abstract summary: A class of above-barrier quantum-scattering problems is shown to provide an experimentally-accessible platform for studying $mathcalPT$-symmetric Schr"odinger equations.
These potentials are one-dimensional, inverted, and unstable and have the form $V(x) = - lvert xrvertp$ ($p>0$), terminated at a finite length or energy to a constant value as $xto pminfty$.
The signature of unbroken $mathcalPT$ symmetry is the existence of reflectionless propagating
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A class of above-barrier quantum-scattering problems is shown to provide an
experimentally-accessible platform for studying $\mathcal{PT}$-symmetric
Schr\"odinger equations that exhibit spontaneous $\mathcal{PT}$ symmetry
breaking despite having purely real potentials. These potentials are
one-dimensional, inverted, and unstable and have the form $V(x) = - \lvert
x\rvert^p$ ($p>0$), terminated at a finite length or energy to a constant value
as $x\to \pm\infty$. The signature of unbroken $\mathcal{PT}$ symmetry is the
existence of reflectionless propagating states at discrete real energies up to
arbitrarily high energy. In the $\mathcal{PT}$-broken phase, there are no such
solutions. In addition, there exists an intermediate mixed phase, where
reflectionless states exist at low energy but disappear at a fixed finite
energy, independent of termination length. In the mixed phase exceptional
points (EPs) occur at specific $p$ and energy values, with a quartic dip in the
reflectivity in contrast to the quadratic behavior away from EPs.
$\mathcal{PT}$-symmetry-breaking phenomena have not been previously predicted
in a quantum system with a real potential and no reservoir coupling. The
effects predicted here are measurable in standard cold-atom experiments with
programmable optical traps. The physical origin of the symmetry-breaking
transition is elucidated using a WKB force analysis that identifies the spatial
location of the above-barrier scattering.
Related papers
- Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Quantum chaos in PT symmetric quantum systems [2.2530496464901106]
We study the interplay between $mathcalPT$-symmetry and quantum chaos in a non-Hermitian dynamical system.
We find that the complex level spacing ratio can distinguish between all three phases.
In the phases with $mathcalPT$-symmetry, the OTOC exhibits behaviour akin to what is observed in the Hermitian system.
arXiv Detail & Related papers (2024-01-14T06:47:59Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - Propagating-wave approximation in two-dimensional potential scattering [0.0]
We introduce a nonperturbative approximation scheme for performing scattering calculations in two dimensions.
We show that the above approximation reduces to the first Born approximation for weak potentials.
We identify an infinite class of complex potentials for which this approximation scheme is exact.
arXiv Detail & Related papers (2022-04-11T14:39:25Z) - Quantum fluctuations on top of a $\mathcal{PT}$-symmetric Bose-Einstein
Condensate [0.0]
We investigate the effects of quantum fluctuations in a parity-time($mathcalPT$) symmetric two-species Bose-Einstein Condensate(BEC)
It is found that the $mathcalPT$-symmetry can be spontaneously broken by its Bogoliubov quasi-particles under quantum fluctuations.
arXiv Detail & Related papers (2021-08-10T02:00:49Z) - Information retrieval and eigenstates coalescence in a non-Hermitian
quantum system with anti-$\mathcal{PT}$ symmetry [15.273168396747495]
Non-Hermitian systems with parity-time reversal ($mathcalPT$) or anti-$mathcalPT$ symmetry have attracted a wide range of interest owing to their unique characteristics and counterintuitive phenomena.
We implement a Floquet Hamiltonian of a single qubit with anti-$mathcalPT$ symmetry by periodically driving a dissipative quantum system of a single trapped ion.
arXiv Detail & Related papers (2021-07-27T07:11:32Z) - SYK meets non-Hermiticity II: measurement-induced phase transition [16.533265279392772]
We analytically derive the effective action in the large-$N$ limit and show that an entanglement transition is caused by the symmetry breaking in the enlarged replica space.
We also verify the large-$N$ critical exponents by numerically solving the Schwinger-Dyson equation.
arXiv Detail & Related papers (2021-04-16T17:55:08Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Resilience of the superradiant phase against $\mathbf {A^2}$ effects in
the quantum Rabi dimer [0.0]
We study the quantum criticality of a two-site model combining quantum Rabi models with hopping interaction.
We find that the model allows the appearance of a superradiant quantum phase transition (QPT) even in the presence of strong $mathbfA2$ terms.
Our work provides a way to the study of phase transitions in presence of the $mathbfA2$ terms and offers the prospect of investigating quantum-criticality physics and quantum devices in many-body systems.
arXiv Detail & Related papers (2020-03-03T04:14:13Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.