Resilience of the superradiant phase against $\mathbf {A^2}$ effects in
the quantum Rabi dimer
- URL: http://arxiv.org/abs/2003.01325v1
- Date: Tue, 3 Mar 2020 04:14:13 GMT
- Title: Resilience of the superradiant phase against $\mathbf {A^2}$ effects in
the quantum Rabi dimer
- Authors: Yimin Wang, Maoxin Liu, Wen-Long You, Stefano Chesi, Hong-Gang Luo,
and Hai-Qing Lin
- Abstract summary: We study the quantum criticality of a two-site model combining quantum Rabi models with hopping interaction.
We find that the model allows the appearance of a superradiant quantum phase transition (QPT) even in the presence of strong $mathbfA2$ terms.
Our work provides a way to the study of phase transitions in presence of the $mathbfA2$ terms and offers the prospect of investigating quantum-criticality physics and quantum devices in many-body systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the quantum criticality of a two-site model combining quantum Rabi
models with hopping interaction. Through a combination of analytical and
numerical approaches, we find that the model allows the appearance of a
superradiant quantum phase transition (QPT) even in the presence of strong
$\mathbf{A}^2$ terms, preventing single-site superradiance. In the two-site
model the effect of $\mathbf{A}^2$ terms can be surmounted by the photon
delocalization from hopping, and a reversed superradiant QPT occurs as a
consequence of the competition between $\mathbf{A}^2$ terms and the hopping
interaction. We characterize the phase diagram and scaling functions, and
extract the critical exponents in the vicinity of the critical point, thus
establishing the universal behavior of the second-order phase transition.
Remarkably the effective hopping strength will be enhanced if more cavities are
cascaded. We also prove that the multi-qubit counterpart of the quantum Rabi
dimer, i.e., the Dicke dimer, has the same properties in beating the
$\mathbf{A}^2$ effect. Our work provides a way to the study of phase
transitions in presence of the $\mathbf{A}^2$ terms and offers the prospect of
investigating quantum-criticality physics and quantum devices in many-body
systems.
Related papers
- Quantum Entanglement in the Rabi Model with the Presence of the $A^{2}$ Term [0.0]
The quantum Rabi model (QRM) is used to describe the light-matter interaction at the quantum level in Cavity Quantum Electrodynamics (Cavity QED)
In this study, we comparatively analyze the behaviors of the QRM and the influence of the $A2$ term in the light-matter quantum Hamiltonian.
arXiv Detail & Related papers (2024-09-06T18:30:32Z) - Phase driven unconventional superradiance phase transition in non-Hermitian cascaded quantum Rabi cavities [0.0]
This study investigates phase-driven symmetry breaking leading to superradiance phase transitions in non-Hermitian quantum Rabi cavities.
We analytically derive the superradiance phase boundary, validated by observables.
We identify phase-driven first- and second-order superradiance phase transitions, focusing on the quantum criticality of the second-order transition.
arXiv Detail & Related papers (2024-06-24T12:13:50Z) - Tunable quantum criticality and pseudocriticality across the fixed-point
annihilation in the anisotropic spin-boson model [0.26107298043931204]
We study the nontrivial renormalization-group scenario of fixed-point annihilation in spin-boson models.
We find a tunable transition between two localized phases that can be continuous or strongly first-order.
We also find scaling behavior at the symmetry-enhanced first-order transition, for which the inverse correlation-length exponent is given by the bath exponent.
arXiv Detail & Related papers (2024-03-04T19:00:07Z) - Robust spectral $\pi$ pairing in the random-field Floquet quantum Ising
model [44.84660857803376]
We study level pairings in the many-body spectrum of the random-field Floquet quantum Ising model.
The robustness of $pi$ pairings against longitudinal disorder may be useful for quantum information processing.
arXiv Detail & Related papers (2024-01-09T20:37:48Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - SU(2)-Symmetric Spin-Boson Model: Quantum Criticality, Fixed-Point
Annihilation, and Duality [0.582519087605215]
We present high-accuracy quantum Monte Carlo results for the SU(2)-symmetric $S=1/2$ spin-boson (or Bose-Kondo) model.
Using a detailed scaling analysis, we provide direct numerical evidence for the collision and annihilation of two RG fixed points at $sast = 0.6540(2)$.
arXiv Detail & Related papers (2022-03-04T19:00:19Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Quantum dynamics and relaxation in comb turbulent diffusion [91.3755431537592]
Continuous time quantum walks in the form of quantum counterparts of turbulent diffusion in comb geometry are considered.
Operators of the form $hatcal H=hatA+ihatB$ are described.
Rigorous analytical analysis is performed for both wave and Green's functions.
arXiv Detail & Related papers (2020-10-13T15:50:49Z) - Dirac-type nodal spin liquid revealed by refined quantum many-body
solver using neural-network wave function, correlation ratio, and level
spectroscopy [0.0]
We show that a machine-learning method for quantum many-body systems has achieved state-of-the-art accuracy.
This achievement demonstrates that the quantum-state representation using machine learning techniques is a promising tool for investigating grand challenges in quantum many-body physics.
arXiv Detail & Related papers (2020-05-28T16:54:47Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.