論文の概要: EPA Particulate Matter Data -- Analyses using Local Control Strategy
- arxiv url: http://arxiv.org/abs/2209.05461v3
- Date: Tue, 20 Dec 2022 03:31:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 11:07:19.151041
- Title: EPA Particulate Matter Data -- Analyses using Local Control Strategy
- Title(参考訳): EPA 粒子状物質データ ローカル制御戦略を用いた分析
- Authors: Robert L. Obenchain and S. Stanley Young
- Abstract要約: 我々は,2016年の米国環境疫学データに対するNU Learningアプローチの活用について述べる。
比較的高い空気中の生体生成粒子状物質を持つ地域は、比較的高い循環および/または呼吸死亡率を持つと予想されていますか?」と分析した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Statistical Learning methodology for analysis of large collections of
cross-sectional observational data can be most effective when the approach used
is both Nonparametric and Unsupervised. We illustrate use of our NU Learning
approach on 2016 US environmental epidemiology data that we have made freely
available. We encourage other researchers to download these data, apply
whatever methodology they wish, and contribute to development of a broad-based
``consensus view'' of potential effects of Secondary Organic Aerosols (volatile
organic compounds of predominantly biogenic or anthropogenic origin) within
PM2.5 particulate matter on circulatory and/or respiratory mortality. Our
analyses here focus on the question: ``Are regions with relatively high
air-borne biogenic particulate matter also expected to have relatively high
circulatory and/or respiratory mortality?''
- Abstract(参考訳): 横断観測データの大規模な収集を統計的に解析する手法は, 提案手法が非パラメトリックかつ教師なしである場合に有効である。
我々は,2016年の米国環境疫学データに対して,自由に利用可能なnu学習手法を応用した。
PM2.5粒子状物質中の二次有機エアロゾル(主に生物起源または人為起源の揮発性有機化合物)の循環および/または呼吸死に対する潜在的影響について、他の研究者がこれらのデータをダウンロードし、必要な方法論を適用することを奨励する。
本研究は,「空気中生起性粒子状物質が比較的高い地域は,比較的循環性および/または呼吸性死亡率が高いと期待されているか?」という問いに焦点をあてた。
関連論文リスト
- Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
メタン (CH_4) は強力な温室効果ガスであり、20年間で二酸化炭素 (CO_2) の86倍の温暖化に寄与する。
この研究は、ショートウェーブ赤外線(SWIR)帯域におけるメタン点源検出センサの既存の情報を拡張する。
従来の機械学習(ML)アプローチと同様に、最先端の技術をレビューする。
論文 参考訳(メタデータ) (2024-08-27T15:03:20Z) - Regressor-free Molecule Generation to Support Drug Response Prediction [83.25894107956735]
目標IC50スコアに基づく条件生成により、より効率的なサンプリングスペースを得ることができる。
回帰自由誘導は、拡散モデルのスコア推定と、数値ラベルに基づく回帰制御モデルの勾配を結合する。
論文 参考訳(メタデータ) (2024-05-23T13:22:17Z) - Prediction of soil fertility parameters using USB-microscope imagery and portable X-ray fluorescence spectrometry [3.431158134976364]
本研究では, 可搬型蛍光X線分析法と土壌画像解析による土壌の高速肥育性評価について検討した。
インド東部の多様な農業気候帯から採取した1,133個の土壌サンプルを分析した。
論文 参考訳(メタデータ) (2024-04-17T17:57:20Z) - Machine Learning for Urban Air Quality Analytics: A Survey [27.96085346957208]
大気汚染は、広範囲にわたる結果に緊急の世界的な懸念をもたらす。
本稿では,機械学習に基づく空気質分析に関する総合的な調査を紹介する。
論文 参考訳(メタデータ) (2023-10-14T17:03:29Z) - Objective-Agnostic Enhancement of Molecule Properties via Multi-Stage
VAE [1.3597551064547502]
変異オートエンコーダ(VAE)は医薬品発見の一般的な方法であり、その性能を改善するために様々なアーキテクチャやパイプラインが提案されている。
VAEアプローチは、データが高次元の周囲空間に埋め込まれた低次元多様体上にあるとき、多様体の回復不良に悩まされることが知られている。
本稿では, 合成データセット上での多様体回復を向上する多段階VAEアプローチを創薬分野に適用することを検討する。
論文 参考訳(メタデータ) (2023-08-24T20:22:22Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
計算負担を軽減するため,近年の大規模分散時間GPを構築した。
我々は,古気候の確率モデルを構築するために,この2倍のスパースGPをうまく利用した。
論文 参考訳(メタデータ) (2022-11-15T14:15:04Z) - Detecting Elevated Air Pollution Levels by Monitoring Web Search
Queries: Deep Learning-Based Time Series Forecasting [7.978612711536259]
以前の研究は、地上モニターや気象データから収集した汚染物質濃度を長期予測のモデルに頼っていた。
本研究では,主要な検索エンジンからほぼリアルタイムで公開されているWeb検索データを用いて,観測された汚染レベルを推定するモデルを開発し,検証することを目的とする。
従来型の教師付き分類法と最先端の深層学習法を併用して,米国の都市レベルで大気汚染レベルの上昇を検出する機械学習モデルを開発した。
論文 参考訳(メタデータ) (2022-11-09T23:56:35Z) - Data-Efficient Learning via Minimizing Hyperspherical Energy [48.47217827782576]
本稿では,少数の代表データを用いたスクラッチからのデータ効率学習の問題について考察する。
我々は,MHEに基づくアクティブラーニング(MHEAL)アルゴリズムを提案し,MHEALの包括的な理論的保証を提供する。
論文 参考訳(メタデータ) (2022-06-30T11:39:12Z) - Label scarcity in biomedicine: Data-rich latent factor discovery
enhances phenotype prediction [102.23901690661916]
低次元の埋め込み空間は、健康指標、ライフスタイル、および人口動態の予測をデータスカース化するために、英国バイオバンクの人口データセットから導出することができる。
半超越的アプローチによるパフォーマンス向上は、おそらく様々な医学データサイエンス応用にとって重要な要素となるだろう。
論文 参考訳(メタデータ) (2021-10-12T16:25:50Z) - The Effects of Air Quality on the Spread of the COVID-19. An Artificial
Intelligence Approach [3.997680012976965]
本研究の目的は,イタリア地方における大気汚染とcovid-19の感染状況の関連について検討することである。
日頃のCOVID-19の事例と、気温、相対湿度、大気汚染物質などの環境要因との相関関係の分析を報告します。
これは、将来の感染数を予測するために環境パラメータでトレーニングされた機械学習モデルが正確であることを示唆している。
論文 参考訳(メタデータ) (2021-04-09T19:08:59Z) - Assessing Graph-based Deep Learning Models for Predicting Flash Point [52.931492216239995]
グラフベースのディープラーニング(GBDL)モデルは初めてフラッシュポイントを予測するために実装された。
MPNNの平均R2と平均絶対誤差(MAE)は、それぞれ2.3%低、2.0K高である。
論文 参考訳(メタデータ) (2020-02-26T06:10:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。