論文の概要: Concealing Sensitive Samples against Gradient Leakage in Federated
Learning
- arxiv url: http://arxiv.org/abs/2209.05724v2
- Date: Thu, 14 Dec 2023 15:42:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-16 05:27:56.443891
- Title: Concealing Sensitive Samples against Gradient Leakage in Federated
Learning
- Title(参考訳): フェデレーション学習における勾配漏洩に対する敏感なサンプルの隠蔽
- Authors: Jing Wu, Munawar Hayat, Mingyi Zhou, Mehrtash Harandi
- Abstract要約: Federated Learning(FL)は、クライアントが生のプライベートデータをサーバと共有する必要をなくし、ユーザのプライバシを高める分散学習パラダイムである。
近年の研究では、FLの脆弱性が逆攻撃のモデルとなり、敵は共有勾配情報に基づく盗聴によって個人データを再構築している。
我々は,機密データの勾配を隠蔽標本で曖昧にする,シンプルで効果的な防衛戦略を提案する。
- 参考スコア(独自算出の注目度): 41.43099791763444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a distributed learning paradigm that enhances
users privacy by eliminating the need for clients to share raw, private data
with the server. Despite the success, recent studies expose the vulnerability
of FL to model inversion attacks, where adversaries reconstruct users private
data via eavesdropping on the shared gradient information. We hypothesize that
a key factor in the success of such attacks is the low entanglement among
gradients per data within the batch during stochastic optimization. This
creates a vulnerability that an adversary can exploit to reconstruct the
sensitive data. Building upon this insight, we present a simple, yet effective
defense strategy that obfuscates the gradients of the sensitive data with
concealed samples. To achieve this, we propose synthesizing concealed samples
to mimic the sensitive data at the gradient level while ensuring their visual
dissimilarity from the actual sensitive data. Compared to the previous art, our
empirical evaluations suggest that the proposed technique provides the
strongest protection while simultaneously maintaining the FL performance.
- Abstract(参考訳): Federated Learning(FL)は、クライアントが生のプライベートデータをサーバと共有する必要をなくし、ユーザのプライバシを高める分散学習パラダイムである。
このような成功にもかかわらず、最近の研究では、flの脆弱性がインバージョン攻撃のモデル化に現れ、敵が共有勾配情報を盗聴することでユーザーのプライベートデータを再構築する。
このような攻撃を成功させる重要な要因は、確率的最適化中にバッチ内のデータ毎の勾配が低いことであると仮定する。
これにより、敵が機密データを再構築するために悪用できる脆弱性が生じる。
この知見に基づいて,機密データの勾配を隠蔽したサンプルで隠蔽する,単純かつ効果的な防御戦略を提案する。
そこで本研究では,実際の感度データと視覚的に類似性を確保しつつ,勾配レベルでの感度データを模倣するために,隠蔽標本の合成を提案する。
従来の技術と比較すると,提案手法はFL性能を同時に維持しつつ,最強の保護を提供すると考えられる。
関連論文リスト
- Defending against Data Poisoning Attacks in Federated Learning via User Elimination [0.0]
本稿では,フェデレーションモデルにおける敵ユーザの戦略的排除に焦点を当てた,新たなフレームワークを提案する。
我々は、ローカルトレーニングインスタンスが収集したメタデータと差分プライバシー技術を統合することにより、フェデレートアルゴリズムのアグリゲーションフェーズにおける異常を検出する。
提案手法の有効性を実証し,ユーザのプライバシとモデル性能を維持しながらデータ汚染のリスクを大幅に軽減する。
論文 参考訳(メタデータ) (2024-04-19T10:36:00Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Refiner: Data Refining against Gradient Leakage Attacks in Federated
Learning [28.76786159247595]
グラデーションリーク攻撃は クライアントのアップロードした勾配を利用して 機密データを再構築する
本稿では,従来の勾配摂動から分離した新しい防御パラダイムについて検討する。
プライバシ保護とパフォーマンス維持のための2つのメトリクスを共同で最適化するRefinerを設計する。
論文 参考訳(メタデータ) (2022-12-05T05:36:15Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Defense Against Gradient Leakage Attacks via Learning to Obscure Data [48.67836599050032]
フェデレートラーニングは、効果的なプライバシー保護学習メカニズムと考えられている。
本稿では,不明瞭なデータに学習することで,クライアントのデータ保護のための新しい防御手法を提案する。
論文 参考訳(メタデータ) (2022-06-01T21:03:28Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Privacy-Preserving Federated Learning on Partitioned Attributes [6.661716208346423]
フェデレーション学習は、ローカルデータやモデルを公開することなく、協調的なトレーニングを促進する。
ローカルモデルをチューニングし、プライバシー保護された中間表現をリリースする逆学習ベースの手順を紹介します。
精度低下を緩和するために,前方後方分割アルゴリズムに基づく防御法を提案する。
論文 参考訳(メタデータ) (2021-04-29T14:49:14Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。