論文の概要: Computational Sarcasm Analysis on Social Media: A Systematic Review
- arxiv url: http://arxiv.org/abs/2209.06170v1
- Date: Tue, 13 Sep 2022 17:20:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-14 12:46:04.140085
- Title: Computational Sarcasm Analysis on Social Media: A Systematic Review
- Title(参考訳): ソーシャルメディアにおける計算sarcasm分析 : 体系的考察
- Authors: Faria Binte Kader, Nafisa Hossain Nujat, Tasmia Binte Sogir, Mohsinul
Kabir, Hasan Mahmud, Kamrul Hasan
- Abstract要約: サルカズムは、人を侮辱したり、いらいらさせたり、楽しませたりするために、本当に表現したいことの反対を言ったり、書いたりするものとして定義することができる。
テキストデータにおけるサルカズムの曖昧な性質から,その検出は困難であり,感情分析研究コミュニティに大きな関心を寄せている。
- 参考スコア(独自算出の注目度): 0.23488056916440855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sarcasm can be defined as saying or writing the opposite of what one truly
wants to express, usually to insult, irritate, or amuse someone. Because of the
obscure nature of sarcasm in textual data, detecting it is difficult and of
great interest to the sentiment analysis research community. Though the
research in sarcasm detection spans more than a decade, some significant
advancements have been made recently, including employing unsupervised
pre-trained transformers in multimodal environments and integrating context to
identify sarcasm. In this study, we aim to provide a brief overview of recent
advancements and trends in computational sarcasm research for the English
language. We describe relevant datasets, methodologies, trends, issues,
challenges, and tasks relating to sarcasm that are beyond detection. Our study
provides well-summarized tables of sarcasm datasets, sarcastic features and
their extraction methods, and performance analysis of various approaches which
can help researchers in related domains understand current state-of-the-art
practices in sarcasm detection.
- Abstract(参考訳): 皮肉は、誰かを侮辱したり、イライラさせたり、楽しませたりするために、真に表現したいことの反対を言うか、書くか、と定義することができる。
テキストデータにおけるサルカズムの曖昧な性質から,その検出は困難であり,感情分析研究コミュニティに大きな関心を寄せている。
サルカズム検出の研究は10年以上に及ぶが、近年、マルチモーダル環境における教師なし事前訓練トランスフォーマーの採用や、サルカズムを識別するためのコンテキストの統合など、いくつかの重要な進歩がなされている。
本研究では,近年の英語における計算皮肉研究の進展と動向について概説する。
関連するデータセット、方法論、トレンド、問題、課題、および検出を超越したsarcasmに関連するタスクについて説明する。
本研究は,サルカズムのデータセット,サーカスティックな特徴とその抽出方法,および関連する分野の研究者がサルカズム検出の現在の技術動向を理解するのに役立つ様々な手法の性能分析を提供する。
関連論文リスト
- A Survey of Multimodal Sarcasm Detection [32.659528422756416]
サルカスム(Sarcasm)は、発音の文字通りの意味の反対を伝達するために用いられる修辞的な装置である。
これまでに,マルチモーダルサルカズム検出に関する総合的な調査が報告されている。
論文 参考訳(メタデータ) (2024-10-24T16:17:47Z) - Sentiment-enhanced Graph-based Sarcasm Explanation in Dialogue [67.09698638709065]
本稿では,SEntiment-enhanceD Graph を用いたマルチモーダルサルカズム記述フレームワーク EDGE を提案する。
特に,まずレキシコン誘導型発話感情推論モジュールを提案し,そこでは発話感情改善戦略を考案する。
次に,マルチモーダル感情分析モデル JCA を拡張し,映像音声クリップ毎に共同感情ラベルを導出することにより,JCA-SI (Joint Cross Attention-based Sentiment Inference) というモジュールを開発する。
論文 参考訳(メタデータ) (2024-02-06T03:14:46Z) - Sarcasm Detection in a Disaster Context [103.93691731605163]
HurricaneSARCは,意図した皮肉に注釈を付けた15,000ツイートのデータセットである。
私たちの最高のモデルは、データセットで最大0.70F1を得ることができます。
論文 参考訳(メタデータ) (2023-08-16T05:58:12Z) - MMSD2.0: Towards a Reliable Multi-modal Sarcasm Detection System [57.650338588086186]
本稿では,MMSDの欠点を修正する補正データセットMMSD2.0を紹介する。
マルチビューCLIPと呼ばれる,複数視点から多粒度キューを活用可能な新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-14T03:22:51Z) - Researchers eye-view of sarcasm detection in social media textual
content [0.0]
ソーシャルメディアにおけるあらゆる形態のコミュニケーションにおける皮肉文の使用は、ターゲットユーザに対する生理的効果をもたらす。
本稿では,様々なサルカズム検出手法について論じ,いくつかのアプローチ,および最適な特徴を持つ関連するデータセットを結論づける。
論文 参考訳(メタデータ) (2023-04-17T19:45:10Z) - Sarcasm Detection Framework Using Emotion and Sentiment Features [62.997667081978825]
本研究では,感情と感情の特徴を取り入れたモデルを提案する。
我々のアプローチは、ソーシャルネットワークプラットフォームとオンラインメディアの4つのデータセットに対して、最先端の結果を得た。
論文 参考訳(メタデータ) (2022-11-23T15:14:44Z) - How to Describe Images in a More Funny Way? Towards a Modular Approach
to Cross-Modal Sarcasm Generation [62.89586083449108]
本稿では,CMSG(Cross-modal sarcasm Generation)の新たな問題,すなわち,与えられた画像に対してサーカシックな記述を生成することについて検討する。
CMSGは、異なるモード間の相関だけでなく、サルカズムの特性をモデルが満たさなければならないため、困難である。
クロスモデルサルカズム生成のための抽出・生成・生成に基づくモジュール法(EGRM)を提案する。
論文 参考訳(メタデータ) (2022-11-20T14:38:24Z) - sarcasm detection and quantification in arabic tweets [7.173484352846755]
本論文は,ツイートから収集したサルカズム検出のための,人為的注釈付きアラビア語コーパスを作成することを目的としている。
提案手法は、分類ではなく回帰問題としてこの問題に取り組む。
論文 参考訳(メタデータ) (2021-08-03T11:48:27Z) - Parallel Deep Learning-Driven Sarcasm Detection from Pop Culture Text
and English Humor Literature [0.76146285961466]
ベンチマークポップカルチャー Sarcasm corpus のサーカシックな単語分布特徴を手作業で抽出する。
このような単語から重み付きベクトルからなる入力シーケンスを生成する。
提案するサルカズム検出モデルは,提案したデータセットを用いてトレーニングした場合,98.95%のトレーニング精度をピークとする。
論文 参考訳(メタデータ) (2021-06-10T14:01:07Z) - A Report on the 2020 Sarcasm Detection Shared Task [30.430371267812554]
サーカスム解析は自然言語処理における一般的な研究問題である。
サルカズム検出のための計算手法に取り組むコミュニティが増えている中、現状を解析することが不可欠である。
ACL 2020の第2回図式言語処理ワークショップ(2020年第2回)の一環として実施した皮肉検出の共有タスクについて報告する。
論文 参考訳(メタデータ) (2020-05-12T14:27:19Z) - $R^3$: Reverse, Retrieve, and Rank for Sarcasm Generation with
Commonsense Knowledge [51.70688120849654]
非皮肉な入力文に基づくサルカズム生成のための教師なしアプローチを提案する。
本手法では,サルカズムの2つの主要な特徴をインスタンス化するために,検索・編集の枠組みを用いる。
論文 参考訳(メタデータ) (2020-04-28T02:30:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。