Heat-based circuits using quantum rectification
- URL: http://arxiv.org/abs/2209.06215v2
- Date: Tue, 28 May 2024 06:29:37 GMT
- Title: Heat-based circuits using quantum rectification
- Authors: Kasper Poulsen, Nikolaj T. Zinner,
- Abstract summary: Heat-based circuitry has become ever more relevant due to a lower power expense to process logic bits of information.
In heat-based circuits, computations are performed by driving heat currents through a circuit using a temperature difference.
We demonstrate the required functionality of each circuit for use as heat-based analogues of standard electronic components.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With increased power consumption of modern computer components, heat-based circuitry has become ever more relevant due to a lower power expense to process logic bits of information. In heat-based circuits, computations are performed by driving heat currents through a circuit using a temperature difference. Utilizing harmonic oscillators and three-level quantum rectifiers as base components, we study three different heat-based circuits: a series configuration of diodes, a parallel configuration of diodes, and a diode bridge rectifier. We demonstrate the required functionality of each circuit for use as heat-based analogues of standard electronic components. Furthermore, the diode bridge rectifier is found to give consistent sign of the output bias independent of the input bias thus rectifying the input. Our results prove the theoretical feasibility of combining heat current components into heat-based circuits. The three circuits should be realizable using several of the current quantum technology platforms.
Related papers
- Quantum Thermoelectric Circuits: A Universal Approach [0.0]
We develop a panoramic schematic of a quantum thermoelectric circuit theory in the steady state regime.
We establish the foundations by defining the analogs of Kirchhoff's laws for heat currents and temperature gradients.
We have been able to develop a model of a quantum thermal step transformer.
arXiv Detail & Related papers (2024-11-06T13:19:25Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - Quantum Thermal Amplifiers with Engineered Dissipation [0.0]
A three-terminal device, able to control the heat currents flowing through it, is known as a quantum thermal transistor.
We derive a quantum dynamical equation for the evolution of the system to study the role of distinct dissipative thermal noises.
arXiv Detail & Related papers (2022-08-26T12:22:52Z) - Characterizing the performance of heat rectifiers [17.77602155559703]
We quantify the performance of a heat by mapping out the trade-off between heat currents and rectification.
Our results demonstrate the superiority of two strongly-interacting qubits for heat rectification.
arXiv Detail & Related papers (2022-08-23T08:48:05Z) - A Complete Equational Theory for Quantum Circuits [58.720142291102135]
We introduce the first complete equational theory for quantum circuits.
Two circuits represent the same unitary map if and only if they can be transformed one into the other using the equations.
arXiv Detail & Related papers (2022-06-21T17:56:31Z) - LOv-Calculus: A Graphical Language for Linear Optical Quantum Circuits [58.720142291102135]
We introduce the LOv-calculus, a graphical language for reasoning about linear optical quantum circuits.
Two LOv-circuits represent the same quantum process if and only if one can be transformed into the other with the rules of the LOv-calculus.
arXiv Detail & Related papers (2022-04-25T16:59:26Z) - The qutrit as a heat diode and circulator [0.0]
We investigate the heat transport properties of a three-level system coupled to three thermal baths, assuming a model based on superconducting circuit implementations.
We find thermal rectification and circulation effects not expected in configurations with perfectly-filtered couplings.
Heat leakage in off-resonant transitions can be exploited to make the system work as an ideal diode where heat flows in the same direction between two baths irrespective of the sign of the temperature difference.
arXiv Detail & Related papers (2021-09-14T09:47:08Z) - Heat transport in a two-level system driven by a time-dependent
temperature [0.0]
thermotronics aims to develop thermal circuits that operate with temperature biases and heat currents.
Findings are important for efforts to design non-linear thermal components that operate with more than one diode.
arXiv Detail & Related papers (2021-03-12T07:23:51Z) - Thermal phase shifters for femtosecond laser written photonic integrated
circuits [58.720142291102135]
Photonic integrated circuits (PICs) are acknowledged as an effective solution to fulfill the demanding requirements of many practical applications in both classical and quantum optics.
Phase shifters integrated in the photonic circuit offer the possibility to dynamically reconfigure its properties in order to fine tune its operation or to produce adaptive circuits.
We show how thermal shifters to reconfigure photonic circuits can be solved by a careful design of the thermal shifters and by choosing the most appropriate way to drive them.
arXiv Detail & Related papers (2020-04-23T20:09:56Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.