論文の概要: Learning Deep Optimal Embeddings with Sinkhorn Divergences
- arxiv url: http://arxiv.org/abs/2209.06469v1
- Date: Wed, 14 Sep 2022 07:54:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-15 13:32:35.150472
- Title: Learning Deep Optimal Embeddings with Sinkhorn Divergences
- Title(参考訳): Sinkhorn Divergencesを用いたDeep Optimal Embeddingsの学習
- Authors: Soumava Kumar Roy, Yan Han, Mehrtash Harandi, Lars Petersson
- Abstract要約: Deep Metric Learningアルゴリズムは、入力データ間の類似性関係を維持するために、効率的な埋め込み空間を学習することを目的としている。
これらのアルゴリズムは、幅広いタスクにおいて大きなパフォーマンス向上を達成したが、包括的な類似性制約を考慮せず、増大させた。
ここでは,新しい,しかし効果的なDeep Class-wise Discrepancy Loss関数を設計することで,識別的深層埋め込み空間を学習することの懸念に対処する。
- 参考スコア(独自算出の注目度): 33.496926214655666
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Deep Metric Learning algorithms aim to learn an efficient embedding space to
preserve the similarity relationships among the input data. Whilst these
algorithms have achieved significant performance gains across a wide plethora
of tasks, they have also failed to consider and increase comprehensive
similarity constraints; thus learning a sub-optimal metric in the embedding
space. Moreover, up until now; there have been few studies with respect to
their performance in the presence of noisy labels. Here, we address the concern
of learning a discriminative deep embedding space by designing a novel, yet
effective Deep Class-wise Discrepancy Loss (DCDL) function that segregates the
underlying similarity distributions (thus introducing class-wise discrepancy)
of the embedding points between each and every class. Our empirical results
across three standard image classification datasets and two fine-grained image
recognition datasets in the presence and absence of noise clearly demonstrate
the need for incorporating such class-wise similarity relationships along with
traditional algorithms while learning a discriminative embedding space.
- Abstract(参考訳): ディープメトリック学習アルゴリズムは、入力データ間の類似性を保つために効率的な埋め込み空間を学習することを目的としている。
これらのアルゴリズムは幅広いタスクにおいて大きなパフォーマンス向上を達成したが、包括的な類似性制約を考慮・増やすことができず、埋め込み空間における準最適計量を学習した。
また、これまでは、騒々しいラベルの存在下での演奏についての研究はほとんど行われていない。
本稿では,各クラス間の埋め込み点の類似性分布(クラス単位の離散性を導入)を分離する,新しい,しかし効果的なDeep Class-wise Discrepancy Loss (DCDL) 関数を設計することで,識別可能な深層埋め込み空間を学習するという課題に対処する。
3つの標準画像分類データセットと2つの細粒度画像認識データセットにおけるノイズの有無に関する実験結果から,分類的埋め込み空間を学習しながら,従来のアルゴリズムと類型的類似性関係を組み込む必要性が明らかとなった。
関連論文リスト
- SimO Loss: Anchor-Free Contrastive Loss for Fine-Grained Supervised Contrastive Learning [0.0]
提案した類似性-直交性(SimO)損失を利用したアンカーフリーコントラスト学習(L)手法を提案する。
提案手法は,2つの主目的を同時に最適化するセミメトリック判別損失関数を最小化する。
埋め込み空間におけるSimO損失の影響を可視化する。
論文 参考訳(メタデータ) (2024-10-07T17:41:10Z) - Deep Boosting Learning: A Brand-new Cooperative Approach for Image-Text Matching [53.05954114863596]
画像テキストマッチングのための新しいDeep Boosting Learning (DBL)アルゴリズムを提案する。
アンカーブランチは、まずデータプロパティに関する洞察を提供するために訓練される。
ターゲットブランチは、一致したサンプルと未一致のサンプルとの相対距離をさらに拡大するために、より適応的なマージン制約を同時に課される。
論文 参考訳(メタデータ) (2024-04-28T08:44:28Z) - DNA: Denoised Neighborhood Aggregation for Fine-grained Category
Discovery [25.836440772705505]
本稿では,データのセマンティック構造を埋め込み空間にエンコードする自己教師型フレームワークを提案する。
我々は、クエリのk-nearest隣人を正のキーとして検索し、データ間のセマンティックな類似性を捉え、隣人からの情報を集約し、コンパクトなクラスタ表現を学ぶ。
我々の手法は、より正確な隣人(21.31%の精度改善)を検索し、最先端のモデルよりも大きなマージンで性能を向上することができる。
論文 参考訳(メタデータ) (2023-10-16T07:43:30Z) - Improving Deep Representation Learning via Auxiliary Learnable Target Coding [69.79343510578877]
本稿では,深層表現学習の補助的正規化として,新たな学習対象符号化を提案する。
具体的には、より差別的な表現を促進するために、マージンベースの三重項損失と、提案した目標符号上の相関整合損失を設計する。
論文 参考訳(メタデータ) (2023-05-30T01:38:54Z) - Adaptive Hierarchical Similarity Metric Learning with Noisy Labels [138.41576366096137]
適応的階層的類似度メトリック学習法を提案する。
ノイズに敏感な2つの情報、すなわち、クラスワイドのばらつきとサンプルワイドの一貫性を考える。
提案手法は,現在の深層学習手法と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-10-29T02:12:18Z) - Deep Relational Metric Learning [84.95793654872399]
本稿では,画像クラスタリングと検索のためのディープリレーショナルメトリック学習フレームワークを提案する。
我々は、クラス間分布とクラス内分布の両方をモデル化するために、異なる側面から画像を特徴付ける特徴のアンサンブルを学ぶ。
広く使われているCUB-200-2011、Cars196、Stanford Online Productsデータセットの実験は、我々のフレームワークが既存の深層学習方法を改善し、非常に競争力のある結果をもたらすことを示した。
論文 参考訳(メタデータ) (2021-08-23T09:31:18Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Pseudo-supervised Deep Subspace Clustering [27.139553299302754]
オートエンコーダ (AE) ベースのディープサブスペースクラスタリング (DSC) 手法は優れた性能を発揮している。
しかし、AEの自己再建損失は、豊富な有用な関係情報を無視する。
また、セマンティクスラベルを供給せずにハイレベルな類似性を学ぶことも困難である。
論文 参考訳(メタデータ) (2021-04-08T06:25:47Z) - Hyperspherical embedding for novel class classification [1.5952956981784217]
本稿では,正規化ソフトマックス損失下での潜在空間の表現に制約に基づくアプローチを提案する。
本研究では,メトリクス学習と正規化ソフトマックス損失の両方を用いて,異なるデータセット上の未知のクラスを分類するための提案手法を実験的に検証した。
この結果から,提案した戦略は,ペアワイズ学習を必要とせず,メトリック学習戦略よりも優れた分類結果を提供するため,より大規模なクラスで効率的に学習可能であることが示唆された。
論文 参考訳(メタデータ) (2021-02-05T15:42:13Z) - Beyond the Deep Metric Learning: Enhance the Cross-Modal Matching with
Adversarial Discriminative Domain Regularization [21.904563910555368]
本稿では,画像とテキストのペア内における識別データドメインの集合を構築するための新しい学習フレームワークを提案する。
我々のアプローチは一般的に既存のメトリクス学習フレームワークの学習効率と性能を改善することができる。
論文 参考訳(メタデータ) (2020-10-23T01:48:37Z) - Towards Certified Robustness of Distance Metric Learning [53.96113074344632]
我々は,距離学習アルゴリズムの一般化とロバスト性を改善するために,入力空間に逆のマージンを付与することを提唱する。
アルゴリズム的ロバスト性の理論手法を用いることにより,拡張マージンは一般化能力に有益であることを示す。
論文 参考訳(メタデータ) (2020-06-10T16:51:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。