論文の概要: Data Privacy and Trustworthy Machine Learning
- arxiv url: http://arxiv.org/abs/2209.06529v1
- Date: Wed, 14 Sep 2022 10:07:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-15 14:01:53.414553
- Title: Data Privacy and Trustworthy Machine Learning
- Title(参考訳): データプライバシと信頼できる機械学習
- Authors: Martin Strobel and Reza Shokri
- Abstract要約: データプライバシと、信頼できる機械学習(特に公正性、堅牢性、説明可能性)の残りの目標とのトレードオフについて議論する。
本稿では、データプライバシと、信頼できる機械学習(特に公正性、堅牢性、説明可能性)の残りの目標とのトレードオフを考察する。
- 参考スコア(独自算出の注目度): 11.485398132521123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The privacy risks of machine learning models is a major concern when training
them on sensitive and personal data. We discuss the tradeoffs between data
privacy and the remaining goals of trustworthy machine learning (notably,
fairness, robustness, and explainability).
- Abstract(参考訳): 機械学習モデルのプライバシーリスクは、機密データと個人データをトレーニングする際の大きな懸念事項である。
データプライバシと、信頼できる機械学習(特に公正性、堅牢性、説明可能性)の残りの目標とのトレードオフについて議論する。
関連論文リスト
- A Review on Machine Unlearning [3.1168315477643245]
本稿では、機械学習モデルにおけるセキュリティとプライバシに関する詳細をレビューする。
まず、機械学習が日々の生活でユーザーのプライベートデータをどのように活用できるか、そしてこの問題で果たす役割について述べる。
次に,機械学習モデルにおけるセキュリティ脅威を記述することによって,機械学習の概念を導入する。
論文 参考訳(メタデータ) (2024-11-18T06:18:13Z) - Verification of Machine Unlearning is Fragile [48.71651033308842]
両タイプの検証戦略を回避できる2つの新しい非学習プロセスを導入する。
この研究は、機械学習検証の脆弱性と限界を強調し、機械学習の安全性に関するさらなる研究の道を開く。
論文 参考訳(メタデータ) (2024-08-01T21:37:10Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
大規模なWebスクレイプデータセットの使用は、差分プライバシ保存と見なすべきかどうかを疑問視する。
Webデータ上で事前訓練されたこれらのモデルを“プライベート”として公開することで、市民のプライバシーに対する信頼を意味のあるプライバシの定義として損なう可能性があることを警告します。
公的な事前学習がより普及し、強力になるにつれて、私的な学習分野への道のりを議論することで、我々は結論づける。
論文 参考訳(メタデータ) (2022-12-13T10:41:12Z) - A Survey on Differential Privacy with Machine Learning and Future
Outlook [0.0]
差分プライバシーは、あらゆる攻撃や脆弱性から機械学習モデルを保護するために使用される。
本稿では,2つのカテゴリに分類される差分プライベート機械学習アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2022-11-19T14:20:53Z) - Privacy-Preserving Machine Learning for Collaborative Data Sharing via
Auto-encoder Latent Space Embeddings [57.45332961252628]
データ共有プロセスにおけるプライバシ保護機械学習は、極めて重要なタスクである。
本稿では、オートエンコーダによる表現学習を用いて、プライバシーを保護した組込みデータを生成する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-10T17:36:58Z) - Certified Data Removal in Sum-Product Networks [78.27542864367821]
収集したデータの削除は、データのプライバシを保証するのに不十分であることが多い。
UnlearnSPNは、訓練された総生産ネットワークから単一データポイントの影響を取り除くアルゴリズムである。
論文 参考訳(メタデータ) (2022-10-04T08:22:37Z) - Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets [53.866927712193416]
トレーニングデータセットを有害にすることができる敵が、このデータセットでトレーニングされたモデルに、他の当事者のプライベート詳細を漏洩させる可能性があることを示す。
私たちの攻撃は、メンバーシップ推論、属性推論、データ抽出に効果的です。
私たちの結果は、機械学習のためのマルチパーティプロトコルにおける暗号化プライバシ保証の関連性に疑問を投げかけました。
論文 参考訳(メタデータ) (2022-03-31T18:06:28Z) - Reliability Check via Weight Similarity in Privacy-Preserving
Multi-Party Machine Learning [7.552100672006174]
我々は、データプライバシ、モデルプライバシ、マルチパーティ機械学習に関連するデータ品質の懸念に対処することに注力する。
データとモデルのプライバシーを確保しつつ、参加者のデータ品質をチェックするプライバシー保護協調学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T08:55:42Z) - Confidential Machine Learning on Untrusted Platforms: A Survey [10.45742327204133]
我々は機密機械学習(CML)の暗号的アプローチに焦点を当てる。
また、ハードウェア支援の機密コンピューティング環境における摂動ベースのアプローチやCMLなどの他の方向もカバーします。
この議論は、関連する脅威モデル、セキュリティの仮定、攻撃、設計哲学、およびデータユーティリティ、コスト、機密性間の関連するトレードオフの豊富なコンテキストを考慮するための包括的な方法を取ります。
論文 参考訳(メタデータ) (2020-12-15T08:57:02Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
本稿では,PCAL(Adversarial Learning)に基づくプライバシ保護型信用リスクモデリングの枠組みを提案する。
PCALは、ターゲット予測タスクのパフォーマンスの重要なユーティリティ情報を維持しながら、元のデータセット内のプライベート情報を隠蔽することを目的としている。
結果は,PCALがユーザデータから効果的なプライバシフリー表現を学習し,信用リスク分析のためのプライバシ保存機械学習の基盤となることを示唆している。
論文 参考訳(メタデータ) (2020-10-06T07:04:59Z) - Security and Privacy Preserving Deep Learning [2.322461721824713]
ディープラーニングに必要な膨大なデータ収集は、明らかにプライバシーの問題を提示している。
写真や音声録音などの、個人的かつ高感度なデータは、収集する企業によって無期限に保持される。
深層ニューラルネットワークは、トレーニングデータに関する情報を記憶するさまざまな推論攻撃の影響を受けやすい。
論文 参考訳(メタデータ) (2020-06-23T01:53:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。