論文の概要: Graph Contrastive Learning with Personalized Augmentation
- arxiv url: http://arxiv.org/abs/2209.06560v1
- Date: Wed, 14 Sep 2022 11:37:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-15 13:44:34.465582
- Title: Graph Contrastive Learning with Personalized Augmentation
- Title(参考訳): 個人化強化によるグラフコントラスト学習
- Authors: Xin Zhang, Qiaoyu Tan, Xiao Huang, Bo Li
- Abstract要約: グラフの教師なし表現を学習するための有効なツールとして,グラフコントラスト学習(GCL)が登場した。
我々は、textitPersonalized textitAugmentation (GPA) を用いたtextitGraph コントラスト学習と呼ばれる原則付きフレームワークを提案する。
GPAは、学習可能な拡張セレクタを介して、そのトポロジとノード属性に基づいて、各グラフの調整された拡張戦略を推論する。
- 参考スコア(独自算出の注目度): 17.714437631216516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph contrastive learning (GCL) has emerged as an effective tool for
learning unsupervised representations of graphs. The key idea is to maximize
the agreement between two augmented views of each graph via data augmentation.
Existing GCL models mainly focus on applying \textit{identical augmentation
strategies} for all graphs within a given scenario. However, real-world graphs
are often not monomorphic but abstractions of diverse natures. Even within the
same scenario (e.g., macromolecules and online communities), different graphs
might need diverse augmentations to perform effective GCL. Thus, blindly
augmenting all graphs without considering their individual characteristics may
undermine the performance of GCL arts.To deal with this, we propose the first
principled framework, termed as \textit{G}raph contrastive learning with
\textit{P}ersonalized \textit{A}ugmentation (GPA), to advance conventional GCL
by allowing each graph to choose its own suitable augmentation operations.In
essence, GPA infers tailored augmentation strategies for each graph based on
its topology and node attributes via a learnable augmentation selector, which
is a plug-and-play module and can be effectively trained with downstream GCL
models end-to-end. Extensive experiments across 11 benchmark graphs from
different types and domains demonstrate the superiority of GPA against
state-of-the-art competitors.Moreover, by visualizing the learned augmentation
distributions across different types of datasets, we show that GPA can
effectively identify the most suitable augmentations for each graph based on
its characteristics.
- Abstract(参考訳): グラフの教師なし表現を学習するための有効なツールとして,グラフコントラスト学習(GCL)が登場した。
重要なアイデアは、データ拡張によって各グラフの2つの拡張ビュー間の合意を最大化することです。
既存のGCLモデルは、主に与えられたシナリオ内のすべてのグラフに対して \textit{identical augmentation Strategy} を適用することに焦点を当てている。
しかし、実世界のグラフはしばしば単相ではなく、多様な性質の抽象である。
同じシナリオ(例えばマクロ分子やオンラインコミュニティ)でも、異なるグラフは効果的なgclを実行するために多様な拡張を必要とするかもしれない。
Thus, blindly augmenting all graphs without considering their individual characteristics may undermine the performance of GCL arts.To deal with this, we propose the first principled framework, termed as \textit{G}raph contrastive learning with \textit{P}ersonalized \textit{A}ugmentation (GPA), to advance conventional GCL by allowing each graph to choose its own suitable augmentation operations.In essence, GPA infers tailored augmentation strategies for each graph based on its topology and node attributes via a learnable augmentation selector, which is a plug-and-play module and can be effectively trained with downstream GCL models end-to-end.
異なるタイプやドメインの11のベンチマークグラフに対する広範な実験は、最先端の競合相手に対するGPAの優位性を実証するものであり、さらに、学習された拡張分布を異なるタイプのデータセットで可視化することにより、GPAはその特性に基づいて、各グラフに最適な拡張を効果的に特定できることが示される。
関連論文リスト
- Explanation-Preserving Augmentation for Semi-Supervised Graph Representation Learning [13.494832603509897]
グラフ表現学習(GRL)は,ノード分類やグラフ分類といった幅広いタスクのパフォーマンス向上を実現するための有効な手法として登場した。
本稿では,拡張グラフの生成にグラフ説明手法を活用する新しい手法である Explanation-Preserving Augmentation (EPA) を提案する。
EPAはまず、グラフのセマンティクスに最も関係のある部分構造(説明)を推測するために、グラフ説明器を訓練するために少数のラベルを使用する。
論文 参考訳(メタデータ) (2024-10-16T15:18:03Z) - Graph Contrastive Learning with Cohesive Subgraph Awareness [34.76555185419192]
グラフコントラスト学習(GCL)は、多様なグラフの表現を学習するための最先端の戦略として登場した。
グラフの増大と学習過程におけるサブグラフの認識は、GCLの性能を高める可能性があると論じる。
我々はCTAugと呼ばれる新しい統合フレームワークを提案し、結合認識を様々な既存のGCLメカニズムにシームレスに統合する。
論文 参考訳(メタデータ) (2024-01-31T03:51:30Z) - Hybrid Augmented Automated Graph Contrastive Learning [3.785553471764994]
本稿では,Hybrid Augmented Automated Graph Contrastive Learning (HAGCL) というフレームワークを提案する。
HAGCLは機能レベルの学習可能なビュージェネレータとエッジレベルの学習可能なビュージェネレータで構成される。
特徴とトポロジの観点から最も意味のある構造を学ぶことを保証します。
論文 参考訳(メタデータ) (2023-03-24T03:26:20Z) - Graph Soft-Contrastive Learning via Neighborhood Ranking [19.241089079154044]
グラフコントラスト学習(GCL)は,グラフ自己教師型学習の領域において,有望なアプローチとして登場した。
グラフソフトコントラスト学習(GSCL)という新しいパラダイムを提案する。
GSCLは地域ランキングを通じてGCLを促進するため、全く同様のペアを特定する必要がなくなる。
論文 参考訳(メタデータ) (2022-09-28T09:52:15Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
本稿では,グラフコントラスト適応ズームによる自己教師付きグラフ表現学習アルゴリズムを提案する。
このメカニズムにより、G-Zoomはグラフから複数のスケールから自己超越信号を探索して抽出することができる。
我々は,実世界のデータセットに関する広範な実験を行い,提案したモデルが常に最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-11-20T22:45:53Z) - Graph Contrastive Learning Automated [94.41860307845812]
グラフコントラスト学習(GraphCL)は、有望な表現学習性能とともに登場した。
GraphCLのヒンジがアドホックなデータ拡張に与える影響は、データセット毎に手動で選択する必要がある。
本稿では,グラフデータ上でGraphCLを実行する際に,データ拡張を自動的に,適応的に動的に選択する統合バイレベル最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-10T16:35:27Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
2つのコア成分を組み込んだ多次元グラフ学習モデルを提案します。
情報埋め込みグラフを生成するグラフ自己補正(GSC)機構、および入力グラフの包括的な特性評価を達成するために多様性ブースト正規化(DBR)。
一般的なグラフ分類ベンチマークの実験は、提案されたGSCメカニズムが最先端のグラフプーリング方法よりも大幅に改善されることを示しています。
論文 参考訳(メタデータ) (2021-03-17T16:22:24Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - Unsupervised Graph Embedding via Adaptive Graph Learning [85.28555417981063]
グラフオートエンコーダ(GAE)は、グラフ埋め込みのための表現学習において強力なツールである。
本稿では,2つの新しい教師なしグラフ埋め込み法,適応グラフ学習(BAGE)による教師なしグラフ埋め込み,変分適応グラフ学習(VBAGE)による教師なしグラフ埋め込みを提案する。
いくつかのデータセットに関する実験的研究により、我々の手法がノードクラスタリング、ノード分類、グラフ可視化タスクにおいて、ベースラインよりも優れていることが実証された。
論文 参考訳(メタデータ) (2020-03-10T02:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。