Towards Better Generalization with Flexible Representation of
Multi-Module Graph Neural Networks
- URL: http://arxiv.org/abs/2209.06589v4
- Date: Thu, 26 Oct 2023 13:13:16 GMT
- Title: Towards Better Generalization with Flexible Representation of
Multi-Module Graph Neural Networks
- Authors: Hyungeun Lee, Kijung Yoon
- Abstract summary: We use a random graph generator to investigate how the graph size and structural properties affect the predictive performance of GNNs.
We present specific evidence that the average node degree is a key feature in determining whether GNNs can generalize to unseen graphs.
We propose a multi- module GNN framework that allows the network to adapt flexibly to new graphs by generalizing a single canonical nonlinear transformation over aggregated inputs.
- Score: 0.27195102129094995
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph neural networks (GNNs) have become compelling models designed to
perform learning and inference on graph-structured data. However, little work
has been done to understand the fundamental limitations of GNNs for scaling to
larger graphs and generalizing to out-of-distribution (OOD) inputs. In this
paper, we use a random graph generator to systematically investigate how the
graph size and structural properties affect the predictive performance of GNNs.
We present specific evidence that the average node degree is a key feature in
determining whether GNNs can generalize to unseen graphs, and that the use of
multiple node update functions can improve the generalization performance of
GNNs when dealing with graphs of multimodal degree distributions. Accordingly,
we propose a multi-module GNN framework that allows the network to adapt
flexibly to new graphs by generalizing a single canonical nonlinear
transformation over aggregated inputs. Our results show that the multi-module
GNNs improve the OOD generalization on a variety of inference tasks in the
direction of diverse structural features.
Related papers
- A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
We take a manifold perspective to establish the statistical generalization theory of GNNs on graphs sampled from a manifold in the spectral domain.
We prove that the generalization bounds of GNNs decrease linearly with the size of the graphs in the logarithmic scale, and increase linearly with the spectral continuity constants of the filter functions.
arXiv Detail & Related papers (2024-06-07T19:25:02Z) - Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
Graph neural networks (GNNs) have achieved state-of-the-art performance in graph representation learning.
We propose a novel approach, namely collective structure knowledge-augmented graph neural network (CoS-GNN)
arXiv Detail & Related papers (2024-05-17T08:50:00Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Distribution Preserving Graph Representation Learning [11.340722297341788]
Graph neural network (GNN) is effective to model graphs for distributed representations of nodes and an entire graph.
We propose Distribution Preserving GNN (DP-GNN) - a GNN framework that can improve the generalizability of expressive GNN models.
We evaluate the proposed DP-GNN framework on multiple benchmark datasets for graph classification tasks.
arXiv Detail & Related papers (2022-02-27T19:16:26Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - Expressive Power of Invariant and Equivariant Graph Neural Networks [10.419350129060598]
We show that Folklore Graph Neural Networks (FGNN) are the most expressive architectures proposed so far for a given tensor order.
FGNNs are able to learn how to solve the problem, leading to much better average performances than existing algorithms.
arXiv Detail & Related papers (2020-06-28T16:35:45Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
Graph Neural Networks (GNNs) are emerging machine learning models on graphs.
Most existing GNN models in practice are shallow and essentially feature-centric.
We show empirically and analytically that the existing shallow GNNs cannot preserve graph structures well.
We propose Eigen-GNN, a plug-in module to boost GNNs ability in preserving graph structures.
arXiv Detail & Related papers (2020-06-08T02:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.