Convergence Acceleration in Wireless Federated Learning: A Stackelberg Game Approach
- URL: http://arxiv.org/abs/2209.06623v2
- Date: Sun, 16 Jun 2024 13:12:26 GMT
- Title: Convergence Acceleration in Wireless Federated Learning: A Stackelberg Game Approach
- Authors: Kaidi Wang, Yi Ma, Mahdi Boloursaz Mashhadi, Chuan Heng Foh, Rahim Tafazolli, Zhi Ding,
- Abstract summary: This paper studies issues that arise with respect to the joint optimization for convergence time in federated learning over wireless networks (FLOWN)
We consider the criterion and protocol for selection of participating devices in FLOWN under the energy constraint and derive its impact on device selection.
We propose a new age-of-update (AoU) based device selection algorithm.
- Score: 46.72890704790504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies issues that arise with respect to the joint optimization for convergence time in federated learning over wireless networks (FLOWN). We consider the criterion and protocol for selection of participating devices in FLOWN under the energy constraint and derive its impact on device selection. In order to improve the training efficiency, age-of-information (AoI) enables FLOWN to assess the freshness of gradient updates among participants. Aiming to speed up convergence, we jointly investigate global loss minimization and latency minimization in a Stackelberg game based framework. Specifically, we formulate global loss minimization as a leader-level problem for reducing the number of required rounds, and latency minimization as a follower-level problem to reduce time consumption of each round. By decoupling the follower-level problem into two sub-problems, including resource allocation and sub-channel assignment, we achieve an optimal strategy of the follower through monotonic optimization and matching theory. At the leader-level, we derive an upper bound of convergence rate and subsequently reformulate the global loss minimization problem and propose a new age-of-update (AoU) based device selection algorithm. Simulation results indicate the superior performance of the proposed AoU based device selection scheme in terms of the convergence rate, as well as efficient utilization of available sub-channels.
Related papers
- Latency Optimization for Wireless Federated Learning in Multihop Networks [6.99011091188975]
We study a novel latency problem in wireless federated learning (FL) across multi-hop networks.<n>We formulate an optimization problem aimed at minimizing system latency through the joint optimization of leaf and relay nodes.<n>We observe significant latency savings in the wireless multi-hop PAFL system, with reductions of up to 69.37%.
arXiv Detail & Related papers (2025-06-08T19:10:09Z) - Adaptive Deadline and Batch Layered Synchronized Federated Learning [66.93447103966439]
Federated learning (FL) enables collaborative model training across distributed edge devices while preserving data privacy, and typically operates in a round-based synchronous manner.<n>We propose ADEL-FL, a novel framework that jointly optimize per-round deadlines and user-specific batch sizes for layer-wise aggregation.
arXiv Detail & Related papers (2025-05-29T19:59:18Z) - Efficient Federated Split Learning for Large Language Models over Communication Networks [14.461758448289908]
Fine-tuning pre-trained large language models (LLM) in a distributed manner poses significant challenges on resource-constrained edge devices.
We propose FedsLLM, a novel framework that integrates split federated learning with parameter-efficient fine-tuning techniques.
arXiv Detail & Related papers (2025-04-20T16:16:54Z) - Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum [78.27945336558987]
Decentralized server (DFL) eliminates reliance on client-client architecture.
Non-smooth regularization is often incorporated into machine learning tasks.
We propose a novel novel DNCFL algorithm to solve these problems.
arXiv Detail & Related papers (2025-04-17T08:32:25Z) - FLARE: A New Federated Learning Framework with Adjustable Learning Rates over Resource-Constrained Wireless Networks [20.048146776405005]
Wireless federated learning (WFL) suffers from heterogeneity prevailing in the data distributions, computing powers, and channel conditions.
This paper presents a new idea with Federated Learning Adjusted leaning ratE (FLR ratE)
Experiments that FLARE consistently outperforms the baselines.
arXiv Detail & Related papers (2024-04-23T07:48:17Z) - Client Orchestration and Cost-Efficient Joint Optimization for
NOMA-Enabled Hierarchical Federated Learning [55.49099125128281]
We propose a non-orthogonal multiple access (NOMA) enabled HFL system under semi-synchronous cloud model aggregation.
We show that the proposed scheme outperforms the considered benchmarks regarding HFL performance improvement and total cost reduction.
arXiv Detail & Related papers (2023-11-03T13:34:44Z) - Delay-Aware Hierarchical Federated Learning [7.292078085289465]
The paper introduces delay-aware hierarchical federated learning (DFL) to improve the efficiency of distributed machine learning (ML) model training.
During global synchronization, the cloud server consolidates local models with an outdated global model using a convex control algorithm.
Numerical evaluations show DFL's superior performance in terms of faster global model, reduced convergence resource, and evaluations against communication delays.
arXiv Detail & Related papers (2023-03-22T09:23:29Z) - Semi-Synchronous Personalized Federated Learning over Mobile Edge
Networks [88.50555581186799]
We propose a semi-synchronous PFL algorithm, termed as Semi-Synchronous Personalized FederatedAveraging (PerFedS$2$), over mobile edge networks.
We derive an upper bound of the convergence rate of PerFedS2 in terms of the number of participants per global round and the number of rounds.
Experimental results verify the effectiveness of PerFedS2 in saving training time as well as guaranteeing the convergence of training loss.
arXiv Detail & Related papers (2022-09-27T02:12:43Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Time-triggered Federated Learning over Wireless Networks [48.389824560183776]
We present a time-triggered FL algorithm (TT-Fed) over wireless networks.
Our proposed TT-Fed algorithm improves the converged test accuracy by up to 12.5% and 5%, respectively.
arXiv Detail & Related papers (2022-04-26T16:37:29Z) - Accelerating Federated Edge Learning via Topology Optimization [41.830942005165625]
Federated edge learning (FEEL) is envisioned as a promising paradigm to achieve privacy-preserving distributed learning.
It consumes excessive learning time due to the existence of straggler devices.
A novel topology-optimized federated edge learning (TOFEL) scheme is proposed to tackle the heterogeneity issue in federated learning.
arXiv Detail & Related papers (2022-04-01T14:49:55Z) - Over-the-Air Federated Learning via Second-Order Optimization [37.594140209854906]
Federated learning (FL) could result in task-oriented data traffic flows over wireless networks with limited radio resources.
We propose a novel over-the-air second-order federated optimization algorithm to simultaneously reduce the communication rounds and enable low-latency global model aggregation.
arXiv Detail & Related papers (2022-03-29T12:39:23Z) - Unit-Modulus Wireless Federated Learning Via Penalty Alternating
Minimization [64.76619508293966]
Wireless federated learning (FL) is an emerging machine learning paradigm that trains a global parametric model from distributed datasets via wireless communications.
This paper proposes a wireless FL framework, which uploads local model parameters and computes global model parameters via wireless communications.
arXiv Detail & Related papers (2021-08-31T08:19:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.