Unit-Modulus Wireless Federated Learning Via Penalty Alternating
Minimization
- URL: http://arxiv.org/abs/2108.13669v1
- Date: Tue, 31 Aug 2021 08:19:54 GMT
- Title: Unit-Modulus Wireless Federated Learning Via Penalty Alternating
Minimization
- Authors: Shuai Wang, Dachuan Li, Rui Wang, Qi Hao, Yik-Chung Wu, and Derrick
Wing Kwan Ng
- Abstract summary: Wireless federated learning (FL) is an emerging machine learning paradigm that trains a global parametric model from distributed datasets via wireless communications.
This paper proposes a wireless FL framework, which uploads local model parameters and computes global model parameters via wireless communications.
- Score: 64.76619508293966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wireless federated learning (FL) is an emerging machine learning paradigm
that trains a global parametric model from distributed datasets via wireless
communications. This paper proposes a unit-modulus wireless FL (UMWFL)
framework, which simultaneously uploads local model parameters and computes
global model parameters via optimized phase shifting. The proposed framework
avoids sophisticated baseband signal processing, leading to both low
communication delays and implementation costs. A training loss bound is derived
and a penalty alternating minimization (PAM) algorithm is proposed to minimize
the nonconvex nonsmooth loss bound. Experimental results in the Car Learning to
Act (CARLA) platform show that the proposed UMWFL framework with PAM algorithm
achieves smaller training losses and testing errors than those of the benchmark
scheme.
Related papers
- Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
We propose a semi-federated learning (SemiFL) paradigm to leverage both the base station (BS) and devices for a hybrid implementation of centralized learning (CL) and FL.
We propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers.
arXiv Detail & Related papers (2023-10-04T03:32:39Z) - Digital Over-the-Air Federated Learning in Multi-Antenna Systems [30.137208705209627]
We study the performance optimization of federated learning (FL) over a realistic wireless communication system with digital modulation and over-the-air computation (AirComp)
We propose a modified federated averaging (FedAvg) algorithm that combines digital modulation with AirComp to mitigate wireless fading while ensuring the communication efficiency.
An artificial neural network (ANN) is used to estimate the local FL models of all devices and adjust the beamforming matrices at the PS for future model transmission.
arXiv Detail & Related papers (2023-02-04T07:26:06Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization.
In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices.
We show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations.
arXiv Detail & Related papers (2022-09-21T08:52:51Z) - Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity [10.702853653891902]
Federated learning (FL) has emerged as a popular methodology for distributing machine learning across wireless edge devices.
In this work, we consider optimizing the tradeoff between model performance and resource utilization in FL.
Our proposed StoFedDelAv incorporates a localglobal model combiner into the FL computation step.
arXiv Detail & Related papers (2021-12-27T22:30:15Z) - Edge Federated Learning Via Unit-Modulus Over-The-Air Computation
(Extended Version) [64.76619508293966]
This paper proposes a unit-modulus over-the-air computation (UM-AirComp) framework to facilitate efficient edge federated learning.
It uploads simultaneously local model parameters and updates global model parameters via analog beamforming.
We demonstrate the implementation of UM-AirComp in a vehicle-to-everything autonomous driving simulation platform.
arXiv Detail & Related papers (2021-01-28T15:10:22Z) - Delay Minimization for Federated Learning Over Wireless Communication
Networks [172.42768672943365]
The problem of delay computation for federated learning (FL) over wireless communication networks is investigated.
A bisection search algorithm is proposed to obtain the optimal solution.
Simulation results show that the proposed algorithm can reduce delay by up to 27.3% compared to conventional FL methods.
arXiv Detail & Related papers (2020-07-05T19:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.