論文の概要: NAAP-440 Dataset and Baseline for Neural Architecture Accuracy
Prediction
- arxiv url: http://arxiv.org/abs/2209.06626v2
- Date: Thu, 15 Sep 2022 12:24:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-16 11:48:57.668509
- Title: NAAP-440 Dataset and Baseline for Neural Architecture Accuracy
Prediction
- Title(参考訳): naap-440 ニューラルネットワークの精度予測のためのデータセットとベースライン
- Authors: Tal Hakim
- Abstract要約: 440のニューラルアーキテクチャのNAAP-440データセットを導入し、CIFAR10で定型レシピを用いてトレーニングした。
実験では、既製の回帰アルゴリズムを使用してトレーニングプロセスの最大10%を実行することで、アーキテクチャの精度を正確に予測できるだけでなく、より正確に予測できることが示されている。
このアプローチはNASベースの研究を加速するための強力なツールとなり、それによってその効率が劇的に向上する。
- 参考スコア(独自算出の注目度): 1.2183405753834562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural architecture search (NAS) has become a common approach to developing
and discovering new neural architectures for different target platforms and
purposes. However, scanning the search space is comprised of long training
processes of many candidate architectures, which is costly in terms of
computational resources and time. Regression algorithms are a common tool to
predicting a candidate architecture's accuracy, which can dramatically
accelerate the search procedure. We aim at proposing a new baseline that will
support the development of regression algorithms that can predict an
architecture's accuracy just from its scheme, or by only training it for a
minimal number of epochs. Therefore, we introduce the NAAP-440 dataset of 440
neural architectures, which were trained on CIFAR10 using a fixed recipe. Our
experiments indicate that by using off-the-shelf regression algorithms and
running up to 10% of the training process, not only is it possible to predict
an architecture's accuracy rather precisely, but that the values predicted for
the architectures also maintain their accuracy order with a minimal number of
monotonicity violations. This approach may serve as a powerful tool for
accelerating NAS-based studies and thus dramatically increase their efficiency.
The dataset and code used in the study have been made public.
- Abstract(参考訳): ニューラルアーキテクチャサーチ(NAS)は、異なるターゲットプラットフォームと目的のための新しいニューラルアーキテクチャの開発と発見のための一般的なアプローチとなっている。
しかし,探索空間の走査は,多くの候補アーキテクチャの長期学習プロセスから成り,計算資源や時間の観点からコストがかかる。
回帰アルゴリズムは、候補アーキテクチャの精度を予測する一般的なツールであり、検索手順を劇的に加速することができる。
我々は、アーキテクチャの精度をそのスキームから予測できる回帰アルゴリズムの開発をサポートする新しいベースラインの提案や、最小限のエポック数だけをトレーニングすることを目的としている。
そこで本研究では,CIFAR10を用いた440のニューラルネットワークのNAAP-440データセットを提案する。
実験の結果, 既成の回帰アルゴリズムを用い, 最大10%のトレーニングプロセスを実行することで, アーキテクチャの精度を精度良く予測できるだけでなく, アーキテクチャで予測される値も, 最小限のモノトニック性違反で精度を維持していることが示唆された。
このアプローチは、nasベースの研究を加速し、その効率を劇的に向上させる強力なツールとなり得る。
研究で使用されたデータセットとコードは公開されています。
関連論文リスト
- Knowledge-aware Evolutionary Graph Neural Architecture Search [49.13787973318586]
グラフニューラルネットワーク検索(GNAS)は、特定のグラフタスクやデータセットに対して、高性能なグラフニューラルネットワークアーキテクチャをカスタマイズすることができる。
既存のGNAS手法は、探索効率を向上させる可能性のある事前知識を無視して、ゼロ知識状態からアーキテクチャを探し始める。
本研究では,新しいグラフデータセット上での多目的進化探索を高速化するために,そのような先行知識を活用することを提案する。
論文 参考訳(メタデータ) (2024-11-26T11:32:45Z) - Training-free Neural Architecture Search for RNNs and Transformers [0.0]
我々は、RNNアーキテクチャのトレーニング性能を予測する、隠れ共分散と呼ばれる新しいトレーニングフリーメトリックを開発した。
トランスフォーマーアーキテクチャの現在の検索空間パラダイムは、トレーニング不要なニューラルアーキテクチャサーチに最適化されていない。
論文 参考訳(メタデータ) (2023-06-01T02:06:13Z) - Accuracy Prediction for NAS Acceleration using Feature Selection and
Extrapolation [1.2183405753834562]
候補となるニューラルネットワークの精度を予測することは、NASベースのソリューションの重要な能力である。
特徴選択により回帰精度を向上する一方で,回帰アルゴリズムの評価も行う。
この研究で使用された拡張データセットとコードはNAAP-440リポジトリで公開されている。
論文 参考訳(メタデータ) (2022-11-22T17:27:14Z) - Automating Neural Architecture Design without Search [3.651848964235307]
アルゴリズム実行中に生成された各ニューラルネットワークを逐次評価する必要のない新しい視点から、自動アーキテクチャ設計について検討する。
リンク予測にグラフニューラルネットワークを用いて提案手法を実装し,NAS-Bench-101から知識を得た。
さらに、NAS-Bench-101から学んだ知識を利用して、DARTS検索空間におけるアーキテクチャ設計を自動化し、CIFAR10では97.82%、ImageNetでは76.51%の精度で2時間10-4ドルのGPU日しか消費しなかった。
論文 参考訳(メタデータ) (2022-04-21T14:41:05Z) - RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform
Successive Halving [74.61723678821049]
予算の浪費を回避するため,早期に性能の低いアーキテクチャのトレーニングを終了する階層的スケジューリングアルゴリズムであるNOn-uniform Successive Halving (NOSH)を提案する。
予測器に基づくアーキテクチャ探索をペア比較でランク付けする学習として定式化する。
その結果、RANK-NOSHは検索予算を5倍に削減し、様々な空間やデータセットにおける従来の最先端予測手法よりも、競争力やパフォーマンスの向上を実現した。
論文 参考訳(メタデータ) (2021-08-18T07:45:21Z) - The Nonlinearity Coefficient -- A Practical Guide to Neural Architecture
Design [3.04585143845864]
我々は、アーキテクチャが比較的高いテストやトレーニング後のタスクのトレーニングエラーを達成できるかどうかを、トレーニングなしで予測できる手法を開発する。
その後、アーキテクチャ定義自体の観点でエラーを説明し、アーキテクチャを変更するツールを開発します。
最初の大きな貢献は、ニューラルネットワークアーキテクチャの'非線形性の度合い'がそのパフォーマンスの背後にある重要な因果的要因であることを示すことです。
論文 参考訳(メタデータ) (2021-05-25T20:47:43Z) - Weak NAS Predictors Are All You Need [91.11570424233709]
最近の予測器ベースのnasアプローチは、アーキテクチャとパフォーマンスのペアをサンプリングし、プロキシの精度を予測するという2つの重要なステップで問題を解決しようとする。
私たちはこのパラダイムを、アーキテクチャ空間全体をカバーする複雑な予測子から、ハイパフォーマンスなサブスペースへと徐々に進む弱い予測子へとシフトさせます。
NAS-Bench-101 および NAS-Bench-201 で最高の性能のアーキテクチャを見つけるためのサンプルを少なくし、NASNet 検索空間における最先端の ImageNet パフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-02-21T01:58:43Z) - Evolving Neural Architecture Using One Shot Model [5.188825486231326]
EvNAS(Evolving Neural Architecture using One Shot Model)と呼ばれるNAS問題に単純な遺伝的アルゴリズムを適用する新しい手法を提案する。
EvNASはプロキシデータセット、すなわちアーキテクチャを検索する。
CIFAR-10 for 4.4 GPU day on a single GPU and achieve a top-1 test error of 2.47%。
アーキテクチャ探索問題の解法における進化的手法の可能性を示す。
論文 参考訳(メタデータ) (2020-12-23T08:40:53Z) - Multi-fidelity Neural Architecture Search with Knowledge Distillation [69.09782590880367]
ニューラルアーキテクチャ探索のためのベイズ的多重忠実度法 MF-KD を提案する。
知識蒸留は損失関数に追加され、ネットワークが教師ネットワークを模倣することを強制する用語となる。
このような変化した損失関数を持ついくつかのエポックに対するトレーニングは、ロジスティックな損失を持ついくつかのエポックに対するトレーニングよりも、より優れたニューラルアーキテクチャの選択につながることを示す。
論文 参考訳(メタデータ) (2020-06-15T12:32:38Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z) - Semi-Supervised Neural Architecture Search [185.0651567642238]
SemiNASは、多くの未ラベルアーキテクチャを活用する半教師付きニューラルアーキテクチャサーチ(NAS)アプローチである(評価なしで、ほぼコストがかからない)。
NASBench-101で94.02%のテスト精度を達成し、同じ数のアーキテクチャを使用する場合、すべてのベースラインを上回ります。
低リソース環境では97%のインテリジェンス率、ロバストネス環境では15%のテストエラー率、ベースラインではそれぞれ9%、7%の改善を実現している。
論文 参考訳(メタデータ) (2020-02-24T17:23:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。