論文の概要: Natural Language Inference Prompts for Zero-shot Emotion Classification
in Text across Corpora
- arxiv url: http://arxiv.org/abs/2209.06701v2
- Date: Thu, 15 Sep 2022 07:58:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-16 11:47:20.610082
- Title: Natural Language Inference Prompts for Zero-shot Emotion Classification
in Text across Corpora
- Title(参考訳): コーパス横断テキストにおけるゼロショット感情分類のための自然言語推論
- Authors: Flor Miriam Plaza-del-Arco, Mar\'ia-Teresa Mart\'in-Valdivia, Roman
Klinger
- Abstract要約: 特定のプロンプトの定式化の選択はコーパスに適合する必要があることを示す。
この課題は複数のプロンプトの組み合わせで対処可能であることを示す。
- 参考スコア(独自算出の注目度): 11.986676998327864
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Within textual emotion classification, the set of relevant labels depends on
the domain and application scenario and might not be known at the time of model
development. This conflicts with the classical paradigm of supervised learning
in which the labels need to be predefined. A solution to obtain a model with a
flexible set of labels is to use the paradigm of zero-shot learning as a
natural language inference task, which in addition adds the advantage of not
needing any labeled training data. This raises the question how to prompt a
natural language inference model for zero-shot learning emotion classification.
Options for prompt formulations include the emotion name anger alone or the
statement "This text expresses anger". With this paper, we analyze how
sensitive a natural language inference-based zero-shot-learning classifier is
to such changes to the prompt under consideration of the corpus: How carefully
does the prompt need to be selected? We perform experiments on an established
set of emotion datasets presenting different language registers according to
different sources (tweets, events, blogs) with three natural language inference
models and show that indeed the choice of a particular prompt formulation needs
to fit to the corpus. We show that this challenge can be tackled with
combinations of multiple prompts. Such ensemble is more robust across corpora
than individual prompts and shows nearly the same performance as the individual
best prompt for a particular corpus.
- Abstract(参考訳): テキスト感情分類では、関連するラベルのセットはドメインとアプリケーションシナリオに依存しており、モデル開発の時点では知られていないかもしれない。
これはラベルを事前に定義する必要がある教師付き学習の古典的なパラダイムと矛盾する。
ラベルの柔軟な集合を持つモデルを得るための解決策は、ゼロショット学習のパラダイムを自然言語推論タスクとして使うことである。
これはゼロショット学習感情分類のための自然言語推論モデルをどのように促すかという疑問を提起する。
迅速な定式化の選択肢には、感情名「怒り」のみ、あるいは「このテキストは怒りを表す」という文がある。
本稿では,自然言語推論に基づくゼロショット学習分類器が,コーパスを考慮したプロンプトの変更にどれほど敏感かを分析する。
3つの自然言語推論モデルを用いて、異なる言語レジスタ(ツイート、イベント、ブログ)を示す感情データセットの確立されたセットで実験を行い、実際に特定のプロンプト定式化の選択がコーパスに適合することを示す。
この課題は複数のプロンプトの組み合わせで対処可能であることを示す。
このようなアンサンブルはコーパス全体において個々のプロンプトよりも堅牢であり、特定のコーパスに対する個々の最良プロンプトとほぼ同じパフォーマンスを示す。
関連論文リスト
- Learning Phonotactics from Linguistic Informants [54.086544221761486]
本モデルでは,情報理論的なポリシーの1つに従って,データポイントを反復的に選択または合成する。
提案モデルでは,情報提供者を問う項目の選択に使用する情報理論のポリシーが,完全教師付きアプローチに匹敵する,あるいはそれ以上の効率性が得られることがわかった。
論文 参考訳(メタデータ) (2024-05-08T00:18:56Z) - Paralinguistics-Enhanced Large Language Modeling of Spoken Dialogue [71.15186328127409]
パラリンGPT(Paralin GPT)
モデルは、シリアライズされたマルチタスクフレームワーク内の入力プロンプトとして、テキスト、音声埋め込み、およびパラ言語属性の会話コンテキストを取る。
音声対話データセットとして,感情ラベルをパラ言語属性として含むSwitchboard-1コーパスを利用する。
論文 参考訳(メタデータ) (2023-12-23T18:14:56Z) - LanSER: Language-Model Supported Speech Emotion Recognition [25.597250907836152]
本稿では,学習済みの大規模言語モデルを用いて弱い感情ラベルを推定することにより,ラベルなしデータの利用を可能にするLanSERを提案する。
分類学に制約された弱いラベルを推定するために、自動音声認識により抽出された音声の書き起こしに対して、最も深いスコアを持つ感情ラベルを選択するテキスト・エンタテインメント・アプローチを用いる。
実験結果から, 従来のSERデータセットのベースラインモデルでは, 精度が向上し, ラベル効率が向上した。
論文 参考訳(メタデータ) (2023-09-07T19:21:08Z) - ChatGPT as a Text Simplification Tool to Remove Bias [0.0]
特定のサブグループに特有の言語信号の存在は、訓練中に言語モデルによって拾うことができる。
テキストの簡易化という形でバイアス緩和の可能性を探る。
論文 参考訳(メタデータ) (2023-05-09T13:10:23Z) - LabelPrompt: Effective Prompt-based Learning for Relation Classification [31.291466190218912]
本稿では,関係分類タスクのための新しいプロンプト型学習手法であるLabelPromptを提案する。
GIVE MODEL CHOICES!'の直感により、まず関係ラベルを表すための追加トークンを定義し、これらのトークンを意味的初期化を伴う動詞としてみなす。
そして、予測関係と与えられた実体との整合性を緩和するために、コントラスト学習を伴うエンティティ認識モジュールを実装した。
論文 参考訳(メタデータ) (2023-02-16T04:06:25Z) - CCPrefix: Counterfactual Contrastive Prefix-Tuning for Many-Class
Classification [57.62886091828512]
多クラス分類のための新しいプレフィックスチューニング手法であるCCPrefixを提案する。
基本的に、ラベル空間における実数対から派生したインスタンス依存の軟式接頭辞は、多クラス分類における言語動詞化を補完するために利用される。
論文 参考訳(メタデータ) (2022-11-11T03:45:59Z) - Discriminative Language Model as Semantic Consistency Scorer for
Prompt-based Few-Shot Text Classification [10.685862129925727]
本稿では,テキスト分類のための新しいプロンプトベースファインタニング手法(DLM-SCS)を提案する。
根底にある考え方は、真のラベルでインスタンス化されたプロンプトは、偽ラベルを持つ他のプロンプトよりも高いセマンティック一貫性スコアを持つべきであるということである。
我々のモデルは、最先端のプロンプトベースの複数ショット法より優れています。
論文 参考訳(メタデータ) (2022-10-23T16:10:48Z) - The Whole Truth and Nothing But the Truth: Faithful and Controllable
Dialogue Response Generation with Dataflow Transduction and Constrained
Decoding [65.34601470417967]
本稿では,ニューラルネットワークモデリングとルールベース生成の強みを組み合わせた対話応答生成のためのハイブリッドアーキテクチャについて述べる。
本実験により, 本システムは, 流布性, 妥当性, 真理性の評価において, ルールベースおよび学習的アプローチの両方に優れることがわかった。
論文 参考訳(メタデータ) (2022-09-16T09:00:49Z) - Eliciting Knowledge from Pretrained Language Models for Prototypical
Prompt Verbalizer [12.596033546002321]
本稿では,事前学習された言語モデルから知識を抽出することに集中し,プロンプト学習のためのプロトタイプなプロンプト動詞化手法を提案する。
ゼロショット設定では、知識は事前訓練された言語モデルから手動で設計され、初期プロトタイプの埋め込みを形成する。
数ショット設定では、モデルは有意義で解釈可能なプロトタイプの埋め込みを学ぶように調整される。
論文 参考訳(メタデータ) (2022-01-14T12:04:37Z) - On The Ingredients of an Effective Zero-shot Semantic Parser [95.01623036661468]
我々は、標準発話とプログラムの訓練例を文法から言い換えて、ゼロショット学習を分析する。
改良された文法,より強力なパラフレーズ,効率的な学習手法を用いて,これらのギャップを埋めることを提案する。
我々のモデルはラベル付きデータゼロの2つの意味解析ベンチマーク(Scholar, Geo)で高い性能を達成する。
論文 参考訳(メタデータ) (2021-10-15T21:41:16Z) - Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text
Classification [52.69730591919885]
本稿では,ラベル保存型入力摂動の最大損失を最小限に抑える半教師付き対向学習法を提案する。
多様な言語群に対する文書分類と意図分類において,有効性が著しく向上するのを観察する。
論文 参考訳(メタデータ) (2020-07-29T19:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。