Snowmass Computational Frontier: Topical Group Report on Quantum
Computing
- URL: http://arxiv.org/abs/2209.06786v1
- Date: Wed, 14 Sep 2022 17:10:20 GMT
- Title: Snowmass Computational Frontier: Topical Group Report on Quantum
Computing
- Authors: Travis S. Humble, Gabriel N. Perdue, Martin J. Savage
- Abstract summary: This report outlines how Quantum Information Science (QIS) and High Energy Physics (HEP) are deeply intertwined.
Quantum computers do not represent a detour for HEP, rather they are set to become an integral part of our discovery toolkit.
The role of quantum technologies across the entire economy is expected to grow rapidly over the next decade.
- Score: 0.8594140167290096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing will play a pivotal role in the High Energy Physics (HEP)
science program over the early parts of the 21$^{st}$ Century, both as a major
expansion of our capabilities across the Computational Frontier, and in
synthesis with quantum sensing and quantum networks. This report outlines how
Quantum Information Science (QIS) and HEP are deeply intertwined endeavors that
benefit enormously from a strong engagement together. Quantum computers do not
represent a detour for HEP, rather they are set to become an integral part of
our discovery toolkit. Problems ranging from simulating quantum field theories,
to fully leveraging the most sensitive sensor suites for new particle searches,
and even data analysis will run into limiting bottlenecks if constrained to our
current computing paradigms. Easy access to quantum computers is needed to
build a deeper understanding of these opportunities. In turn, HEP brings
crucial expertise to the national quantum ecosystem in quantum domain
knowledge, superconducting technology, cryogenic and fast microelectronics, and
massive-scale project management. The role of quantum technologies across the
entire economy is expected to grow rapidly over the next decade, so it is
important to establish the role of HEP in the efforts surrounding QIS. Fully
delivering on the promise of quantum technologies in the HEP science program
requires robust support. It is important to both invest in the co-design
opportunities afforded by the broader quantum computing ecosystem and leverage
HEP strengths with the goal of designing quantum computers tailored to HEP
science.
Related papers
- Technology and Performance Benchmarks of IQM's 20-Qubit Quantum Computer [56.435136806763055]
IQM Quantum Computers is described covering both the QPU and the rest of the full-stack quantum computer.
The focus is on a 20-qubit quantum computer featuring the Garnet QPU and its architecture, which we will scale up to 150 qubits.
We present QPU and system-level benchmarks, including a median 2-qubit gate fidelity of 99.5% and genuinely entangling all 20 qubits in a Greenberger-Horne-Zeilinger (GHZ) state.
arXiv Detail & Related papers (2024-08-22T14:26:10Z) - Quantum Computing: Vision and Challenges [16.50566018023275]
We discuss cutting-edge developments in quantum computer hardware advancement and subsequent advances in quantum cryptography, quantum software, and high-scalability quantum computers.
Many potential challenges and exciting new trends for quantum technology research and development are highlighted in this paper for a broader debate.
arXiv Detail & Related papers (2024-03-04T17:33:18Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum computing hardware for HEP algorithms and sensing [36.67390040418004]
Quantum information science harnesses the principles of quantum mechanics to realize computational algorithms with complexities vastly intractable by current computer platforms.
Fermilab's Superconducting Quantum Materials and Systems (SQMS) Center is dedicated to providing breakthroughs in quantum computing and sensing.
We discuss the two most promising superconducting quantum architectures for HEP algorithms, i.e. three-level systems (qutrits) supported by transmon devices coupled to planar devices and multi-level systems (qudits with arbitrary N energy levels) supported by superconducting 3D cavities.
arXiv Detail & Related papers (2022-04-19T01:37:36Z) - Evolution of Quantum Computing: A Systematic Survey on the Use of
Quantum Computing Tools [5.557009030881896]
We conduct a systematic survey and categorize papers, tools, frameworks, platforms that facilitate quantum computing.
We discuss the current essence, identify open challenges and provide future research direction.
We conclude that scores of frameworks, tools and platforms are emerged in the past few years, improvement of currently available facilities would exploit the research activities in the quantum research community.
arXiv Detail & Related papers (2022-04-04T21:21:12Z) - Summary: Chicago Quantum Exchange (CQE) Pulse-level Quantum Control
Workshop [4.279232730307778]
Quantum information processing holds great promise for pushing beyond the current frontiers in computing.
We must not only place emphasis on manufacturing better qubits, advancing our algorithms, and developing quantum software.
To scale devices to the fault tolerant regime, we must refine device-level quantum control.
arXiv Detail & Related papers (2022-02-28T08:18:59Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - A practical guide for building superconducting quantum devices [2.7080431315882967]
We present some of the most crucial building blocks developed by the cQED community in recent years.
We aim to provide a synoptic outline of the core techniques that underlie most cQED experiments and offer a practical guide for a novice experimentalist to design, construct, and characterize their first quantum device.
arXiv Detail & Related papers (2021-06-11T05:28:01Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
Digital quantum computers (DQCs) can efficiently perform quantum simulations that are otherwise intractable on classical computers.
The aim of this review is to provide a summary of progress made towards achieving physical quantum advantage.
arXiv Detail & Related papers (2021-01-21T20:10:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.