Optimal Stochastic Resource Allocation for Distributed Quantum Computing
- URL: http://arxiv.org/abs/2210.02886v1
- Date: Fri, 16 Sep 2022 02:37:32 GMT
- Title: Optimal Stochastic Resource Allocation for Distributed Quantum Computing
- Authors: Napat Ngoenriang, Minrui Xu, Sucha Supittayapornpong, Dusit Niyato,
Han Yu, and Xuemin (Sherman) Shen
- Abstract summary: We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
- Score: 50.809738453571015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of interconnected quantum computers, i.e., distributed
quantum computing (DQC), multiple quantum computers can now collaborate via
quantum networks to perform massively complex computational tasks. However, DQC
faces problems sharing quantum information because it cannot be cloned or
duplicated between quantum computers. Thanks to advanced quantum mechanics,
quantum computers can teleport quantum information across quantum networks.
However, challenges to utilizing efficiently quantum resources, e.g., quantum
computers and quantum channels, arise in DQC due to their capabilities and
properties, such as uncertain qubit fidelity and quantum channel noise. In this
paper, we propose a resource allocation scheme for DQC based on stochastic
programming to minimize the total deployment cost for quantum resources.
Essentially, the two-stage stochastic programming model is formulated to handle
the uncertainty of quantum computing demands, computing power, and fidelity in
quantum networks. The performance evaluation demonstrates the effectiveness and
ability of the proposed scheme to balance the utilization of quantum computers
and on-demand quantum computers while minimizing the overall cost of
provisioning under uncertainty.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Applying an Evolutionary Algorithm to Minimize Teleportation Costs in Distributed Quantum Computing [3.0846297887400977]
A quantum communication network can be formed by connecting multiple quantum computers (QCs) through classical and quantum channels.
In distributed quantum computing, QCs collectively perform a quantum computation.
In this paper, we propose an evolutionary algorithm for this problem.
arXiv Detail & Related papers (2023-11-30T13:10:28Z) - QuBEC: Boosting Equivalence Checking for Quantum Circuits with QEC
Embedding [4.15692939468851]
We propose a Decision Diagram-based quantum equivalence checking approach, QuBEC, that requires less latency compared to existing techniques.
Our proposed methodology reduces verification time on certain benchmark circuits by up to $271.49 times$.
arXiv Detail & Related papers (2023-09-19T16:12:37Z) - Preparing random state for quantum financing with quantum walks [1.2074552857379273]
We propose an efficient approach to load classical data into quantum states that can be executed by quantum computers or quantum simulators on classical hardware.
A practical example of implementing SSQW using Qiskit has been released as open-source software.
Showing its potential as a promising method for generating desired probability amplitude distributions highlights the potential application of SSQW in option pricing through quantum simulation.
arXiv Detail & Related papers (2023-02-24T08:01:35Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Distributed Quantum Computing with QMPI [11.71212583708166]
We introduce an extension of the Message Passing Interface (MPI) to enable high-performance implementations of distributed quantum algorithms.
In addition to a prototype implementation of quantum MPI, we present a performance model for distributed quantum computing, SENDQ.
arXiv Detail & Related papers (2021-05-03T18:30:43Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.