A Model Drift Detection and Adaptation Framework for 5G Core Networks
- URL: http://arxiv.org/abs/2209.06852v1
- Date: Mon, 8 Aug 2022 13:29:38 GMT
- Title: A Model Drift Detection and Adaptation Framework for 5G Core Networks
- Authors: Dimitrios Michael Manias, Ali Chouman, Abdallah Shami
- Abstract summary: This paper introduces a model drift detection and adaptation module for 5G core networks.
Using a functional prototype of a 5G core network, a drift in user behaviour is emulated, and the proposed framework is deployed and tested.
- Score: 3.5573601621032935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of Fifth Generation (5G) and beyond 5G networks (5G+) has
revolutionized the way network operators consider the management and
orchestration of their networks. With an increased focus on intelligence and
automation through core network functions such as the NWDAF, service providers
are tasked with integrating machine learning models and artificial intelligence
systems into their existing network operation practices. Due to the dynamic
nature of next-generation networks and their supported use cases and
applications, model drift is a serious concern, which can deteriorate the
performance of intelligent models deployed throughout the network. The work
presented in this paper introduces a model drift detection and adaptation
module for 5G core networks. Using a functional prototype of a 5G core network,
a drift in user behaviour is emulated, and the proposed framework is deployed
and tested. The results of this work demonstrate the ability of the drift
detection module to accurately characterize a drifted concept as well as the
ability of the drift adaptation module to begin the necessary remediation
efforts to restore system performance.
Related papers
- Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Towards Intent-Based Network Management: Large Language Models for Intent Extraction in 5G Core Networks [10.981422497762837]
The integration of Machine Learning and Artificial Intelligence into fifth-generation (5G) networks has made evident the limitations of network intelligence.
This paper presents the development of a custom Large Language Model (LLM) for 5G and next-generation intent-based networking.
arXiv Detail & Related papers (2024-03-04T17:29:57Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
We show that the generalization abilities of model-based networks for sparse recovery outperform those of regular ReLU networks.
We derive practical design rules that allow to construct model-based networks with guaranteed high generalization.
arXiv Detail & Related papers (2023-04-19T16:39:44Z) - An NWDAF Approach to 5G Core Network Signaling Traffic: Analysis and
Characterization [3.5573601621032935]
This paper focuses on demonstrating a working system prototype of the 5G Core (5GC) network and the Network Data Analytics Function (NWDAF) used to bring the benefits of data-driven techniques to fruition.
Analyses of the network-generated data explore core intra-network interactions through unsupervised learning, clustering, and evaluate these results as insights for future opportunities and works.
arXiv Detail & Related papers (2022-09-21T15:21:59Z) - Interference Cancellation GAN Framework for Dynamic Channels [74.22393885274728]
We introduce an online training framework that can adapt to any changes in the channel.
Our framework significantly outperforms recent neural network models on highly dynamic channels.
arXiv Detail & Related papers (2022-08-17T02:01:18Z) - Semantic-aware Modular Capsule Routing for Visual Question Answering [55.03883681191765]
We propose a Semantic-aware modUlar caPsulE framework, termed as SUPER, to better capture the instance-specific vision-semantic characteristics.
We comparatively justify the effectiveness and generalization ability of our proposed SUPER scheme over five benchmark datasets.
arXiv Detail & Related papers (2022-07-21T10:48:37Z) - Towards Supporting Intelligence in 5G/6G Core Networks: NWDAF
Implementation and Initial Analysis [3.5573601621032935]
The work presented in this paper incorporates a functional NWDAF into a 5G network developed using open source software.
The expected limitations of 5G networks are discussed as motivation for the development of 6G networks.
arXiv Detail & Related papers (2022-05-30T14:15:46Z) - Q-Learning for Conflict Resolution in B5G Network Automation [0.9625436987364907]
This work explores pervasive intelligence for conflict resolution in network automation, as an alternative to centralized orchestration.
A Q-Learning decentralized approach to network automation is proposed, and an application to network slice auto-scaling is designed and evaluated.
arXiv Detail & Related papers (2021-07-28T11:00:16Z) - Learnable Expansion-and-Compression Network for Few-shot
Class-Incremental Learning [87.94561000910707]
We propose a learnable expansion-and-compression network (LEC-Net) to solve catastrophic forgetting and model over-fitting problems.
LEC-Net enlarges the representation capacity of features, alleviating feature drift of old network from the perspective of model regularization.
Experiments on the CUB/CIFAR-100 datasets show that LEC-Net improves the baseline by 57% while outperforms the state-of-the-art by 56%.
arXiv Detail & Related papers (2021-04-06T04:34:21Z) - Dynamic Slimmable Network [105.74546828182834]
We develop a dynamic network slimming regime named Dynamic Slimmable Network (DS-Net)
Our DS-Net is empowered with the ability of dynamic inference by the proposed double-headed dynamic gate.
It consistently outperforms its static counterparts as well as state-of-the-art static and dynamic model compression methods.
arXiv Detail & Related papers (2021-03-24T15:25:20Z) - Deep-Mobility: A Deep Learning Approach for an Efficient and Reliable 5G
Handover [0.0]
5G cellular networks are being deployed all over the world and this architecture supports ultra-dense network (UDN) deployment.
Small cells have a very important role in providing 5G connectivity to the end users.
In contrast to any traditional handover improvement scheme, we develop a 'Deep-Mobility' model by implementing a deep learning neural network (DLNN) to manage network mobility.
arXiv Detail & Related papers (2021-01-17T00:31:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.