Towards Intent-Based Network Management: Large Language Models for Intent Extraction in 5G Core Networks
- URL: http://arxiv.org/abs/2403.02238v2
- Date: Wed, 22 May 2024 13:34:33 GMT
- Title: Towards Intent-Based Network Management: Large Language Models for Intent Extraction in 5G Core Networks
- Authors: Dimitrios Michael Manias, Ali Chouman, Abdallah Shami,
- Abstract summary: The integration of Machine Learning and Artificial Intelligence into fifth-generation (5G) networks has made evident the limitations of network intelligence.
This paper presents the development of a custom Large Language Model (LLM) for 5G and next-generation intent-based networking.
- Score: 10.981422497762837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Machine Learning and Artificial Intelligence (ML/AI) into fifth-generation (5G) networks has made evident the limitations of network intelligence with ever-increasing, strenuous requirements for current and next-generation devices. This transition to ubiquitous intelligence demands high connectivity, synchronicity, and end-to-end communication between users and network operators, and will pave the way towards full network automation without human intervention. Intent-based networking is a key factor in the reduction of human actions, roles, and responsibilities while shifting towards novel extraction and interpretation of automated network management. This paper presents the development of a custom Large Language Model (LLM) for 5G and next-generation intent-based networking and provides insights into future LLM developments and integrations to realize end-to-end intent-based networking for fully automated network intelligence.
Related papers
- Zero-Touch Networks: Towards Next-Generation Network Automation [21.003217781832923]
The Zero-touch network and Service Management (ZSM) framework represents an emerging paradigm in the management of the fifth-generation (5G) and Beyond (5G+) networks.
ZSM frameworks leverage advanced technologies such as Machine Learning (ML) to enable intelligent decision-making and reduce human intervention.
This paper presents a survey of Zero-Touch Networks (ZTNs) within the ZSM framework, covering network optimization, traffic monitoring, energy efficiency, and security aspects of next-generational networks.
arXiv Detail & Related papers (2023-12-07T09:21:41Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
We propose a 6G native AI framework based on foundation models, provide a customization approach for intent-aware PFM, and outline a novel cloud-edge-end collaboration paradigm.
As a practical use case, we apply this framework for orchestration, achieving the maximum sum rate within a wireless communication system.
arXiv Detail & Related papers (2023-10-26T15:19:40Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
Edge artificial intelligence (Edge AI) is a promising solution to achieve connected intelligence.
This article presents a vision of autonomous edge AI systems that automatically organize, adapt, and optimize themselves to meet users' diverse requirements.
arXiv Detail & Related papers (2023-07-06T05:16:55Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - A Model Drift Detection and Adaptation Framework for 5G Core Networks [3.5573601621032935]
This paper introduces a model drift detection and adaptation module for 5G core networks.
Using a functional prototype of a 5G core network, a drift in user behaviour is emulated, and the proposed framework is deployed and tested.
arXiv Detail & Related papers (2022-08-08T13:29:38Z) - Towards Supporting Intelligence in 5G/6G Core Networks: NWDAF
Implementation and Initial Analysis [3.5573601621032935]
The work presented in this paper incorporates a functional NWDAF into a 5G network developed using open source software.
The expected limitations of 5G networks are discussed as motivation for the development of 6G networks.
arXiv Detail & Related papers (2022-05-30T14:15:46Z) - Introduction to the Artificial Intelligence that can be applied to the
Network Automation Journey [68.8204255655161]
The "Intent-Based Networking - Concepts and Definitions" document describes the different parts of the ecosystem that could be involved in NetDevOps.
The recognize, generate intent, translate and refine features need a new way to implement algorithms.
arXiv Detail & Related papers (2022-04-02T08:12:08Z) - Q-Learning for Conflict Resolution in B5G Network Automation [0.9625436987364907]
This work explores pervasive intelligence for conflict resolution in network automation, as an alternative to centralized orchestration.
A Q-Learning decentralized approach to network automation is proposed, and an application to network slice auto-scaling is designed and evaluated.
arXiv Detail & Related papers (2021-07-28T11:00:16Z) - Deep-Mobility: A Deep Learning Approach for an Efficient and Reliable 5G
Handover [0.0]
5G cellular networks are being deployed all over the world and this architecture supports ultra-dense network (UDN) deployment.
Small cells have a very important role in providing 5G connectivity to the end users.
In contrast to any traditional handover improvement scheme, we develop a 'Deep-Mobility' model by implementing a deep learning neural network (DLNN) to manage network mobility.
arXiv Detail & Related papers (2021-01-17T00:31:37Z) - True-data Testbed for 5G/B5G Intelligent Network [46.09035008165811]
We build the world's first true-data testbed for 5G/B5G intelligent network (TTIN)
TTIN comprises 5G/B5G on-site experimental networks, data acquisition & data warehouse, and AI engine & network optimization.
This paper elaborates on the system architecture and module design of TTIN.
arXiv Detail & Related papers (2020-11-26T06:42:36Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
Edge intelligence, also called edge-native artificial intelligence (AI), is an emerging technological framework focusing on seamless integration of AI, communication networks, and mobile edge computing.
In this article, we identify the key requirements and challenges of edge-native AI in 6G.
arXiv Detail & Related papers (2020-10-01T02:16:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.