論文の概要: Data Lifecycle Management in Evolving Input Distributions for
Learning-based Aerospace Applications
- arxiv url: http://arxiv.org/abs/2209.06855v1
- Date: Wed, 14 Sep 2022 18:15:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-16 12:16:52.839637
- Title: Data Lifecycle Management in Evolving Input Distributions for
Learning-based Aerospace Applications
- Title(参考訳): 学習型航空宇宙アプリケーションのための進化する入力分布におけるデータライフサイクル管理
- Authors: Somrita Banerjee, Apoorva Sharma, Edward Schmerling, Max Spolaor,
Michael Nemerouf, Marco Pavone
- Abstract要約: 本稿では,テスト入力のサブセットをラベルに選択することで,モデルを段階的に再学習するフレームワークを提案する。
本フレームワーク内のアルゴリズムは,(1)ミッション寿命を通してのモデル性能と(2)ラベル付けとモデル再訓練に関連する累積コストに基づいて評価される。
- 参考スコア(独自算出の注目度): 23.84037777018747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As input distributions evolve over a mission lifetime, maintaining
performance of learning-based models becomes challenging. This paper presents a
framework to incrementally retrain a model by selecting a subset of test inputs
to label, which allows the model to adapt to changing input distributions.
Algorithms within this framework are evaluated based on (1) model performance
throughout mission lifetime and (2) cumulative costs associated with labeling
and model retraining. We provide an open-source benchmark of a satellite pose
estimation model trained on images of a satellite in space and deployed in
novel scenarios (e.g., different backgrounds or misbehaving pixels), where
algorithms are evaluated on their ability to maintain high performance by
retraining on a subset of inputs. We also propose a novel algorithm to select a
diverse subset of inputs for labeling, by characterizing the information gain
from an input using Bayesian uncertainty quantification and choosing a subset
that maximizes collective information gain using concepts from batch active
learning. We show that our algorithm outperforms others on the benchmark, e.g.,
achieves comparable performance to an algorithm that labels 100% of inputs,
while only labeling 50% of inputs, resulting in low costs and high performance
over the mission lifetime.
- Abstract(参考訳): 入力分布がミッションライフタイムに進化するにつれて,学習モデルの性能維持が困難になる。
本稿では,テスト入力のサブセットをラベルに選択することによって,モデルを漸進的に再トレーニングする枠組みを提案する。
本フレームワーク内のアルゴリズムは,(1)ミッション寿命を通してのモデル性能と(2)ラベル付けとモデル再訓練に関連する累積コストに基づいて評価される。
宇宙空間における衛星の画像に基づいて訓練され、新たなシナリオ(例えば、異なる背景や誤った画素)に展開される衛星ポーズ推定モデルのオープンソースベンチマークを提供する。
また,ベイズの不確実性定量化を用いた入力からの情報ゲインを特徴付け,バッチアクティブラーニングの概念を用いて集合情報ゲインを最大化するサブセットを選択することで,ラベル付けのための多様なサブセットを選択する新しいアルゴリズムを提案する。
我々のアルゴリズムは、例えば、100%の入力をラベル付けするアルゴリズムに匹敵する性能を達成し、50%の入力のみをラベル付けし、結果としてミッション寿命よりも低コストで高い性能が得られることを示す。
関連論文リスト
- LPLgrad: Optimizing Active Learning Through Gradient Norm Sample Selection and Auxiliary Model Training [2.762397703396293]
LPLgrad(Loss Prediction Loss with Gradient Norm)は、モデルの不確実性を効果的に定量化し、画像分類タスクの精度を向上させる。
LPLgradは2つの異なるフェーズで動作する: (i) Em Training Phaseは、メインモデルと補助モデルとを併用して入力特徴の損失を予測することを目的としている。
この二重モデルアプローチは、複雑な入力特徴を抽出し、データから本質的なパターンを効果的に学習する能力を高める。
論文 参考訳(メタデータ) (2024-11-20T18:12:59Z) - In2Core: Leveraging Influence Functions for Coreset Selection in Instruction Finetuning of Large Language Models [37.45103473809928]
In2Coreアルゴリズムは,トレーニングモデルと評価サンプルの相関関係を解析し,コアセットを選択する。
LLMの微調整データにアルゴリズムを適用することで、トレーニングデータの50%で同様の性能を実現することができる。
論文 参考訳(メタデータ) (2024-08-07T05:48:05Z) - Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
ドメイン適応(DA)は、ソースドメインから関連するターゲットドメインへの知識伝達を容易にする。
本稿では、ソースデータフリーなアクティブドメイン適応(SFADA)という実用的なDAパラダイムについて検討する。
本稿では,学習者学習(LFTL)というSFADAの新たなパラダイムを紹介し,学習した学習知識を事前学習モデルから活用し,余分なオーバーヘッドを伴わずにモデルを積極的に反復する。
論文 参考訳(メタデータ) (2024-07-26T17:51:58Z) - Bandit-Driven Batch Selection for Robust Learning under Label Noise [20.202806541218944]
本稿では,SGD(Gradient Descent)トレーニングにおけるバッチ選択のための新しい手法を提案する。
本手法は,ラベルノイズの存在下での学習過程の最適化に重点を置いている。
論文 参考訳(メタデータ) (2023-10-31T19:19:01Z) - Robust Outlier Rejection for 3D Registration with Variational Bayes [70.98659381852787]
我々は、ロバストアライメントのための新しい変分非局所ネットワークベース外乱除去フレームワークを開発した。
そこで本稿では, 投票に基づく不整合探索手法を提案し, 変換推定のための高品質な仮説的不整合をクラスタリングする。
論文 参考訳(メタデータ) (2023-04-04T03:48:56Z) - Revisiting Long-tailed Image Classification: Survey and Benchmarks with
New Evaluation Metrics [88.39382177059747]
メトリクスのコーパスは、長い尾の分布で学習するアルゴリズムの正確性、堅牢性、およびバウンダリを測定するために設計されている。
ベンチマークに基づいて,CIFAR10およびCIFAR100データセット上での既存手法の性能を再評価する。
論文 参考訳(メタデータ) (2023-02-03T02:40:54Z) - Preserving Fairness in AI under Domain Shift [15.820660013260584]
AIの公正性を保証するための既存のアルゴリズムは、単発トレーニング戦略を使用している。
ドメインシフトの下で公正な状態を維持するために公正なモデルを適用するアルゴリズムを開発する。
論文 参考訳(メタデータ) (2023-01-29T06:13:40Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Uncertainty-aware Self-training for Text Classification with Few Labels [54.13279574908808]
本研究は,アノテーションのボトルネックを軽減するための半教師あり学習手法の1つとして,自己学習について研究する。
本稿では,基礎となるニューラルネットワークの不確実性推定を取り入れて,自己学習を改善する手法を提案する。
本手法では,クラス毎に20~30個のラベル付きサンプルをトレーニングに利用し,完全教師付き事前学習言語モデルの3%以内で検証を行う。
論文 参考訳(メタデータ) (2020-06-27T08:13:58Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - Active and Incremental Learning with Weak Supervision [7.2288756536476635]
本研究では,逐次学習方式と能動学習方式の組み合わせについて述べる。
オブジェクト検出タスクは、PASCAL VOCデータセット上で連続的な探索コンテキストで評価される。
また,実世界の生物多様性アプリケーションにおいて,能動的・漸進的学習に基づく弱教師付きシステムを検証する。
論文 参考訳(メタデータ) (2020-01-20T13:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。