Fill the K-Space and Refine the Image: Prompting for Dynamic and
Multi-Contrast MRI Reconstruction
- URL: http://arxiv.org/abs/2309.13839v1
- Date: Mon, 25 Sep 2023 02:51:00 GMT
- Title: Fill the K-Space and Refine the Image: Prompting for Dynamic and
Multi-Contrast MRI Reconstruction
- Authors: Bingyu Xin, Meng Ye, Leon Axel, Dimitris N. Metaxas
- Abstract summary: The key to dynamic or multi-contrast magnetic resonance imaging (MRI) reconstruction lies in exploring inter-frame or inter-contrast information.
We propose a two-stage MRI reconstruction pipeline to address these limitations.
Our proposed method significantly outperforms previous state-of-the-art accelerated MRI reconstruction methods.
- Score: 31.404228406642194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The key to dynamic or multi-contrast magnetic resonance imaging (MRI)
reconstruction lies in exploring inter-frame or inter-contrast information.
Currently, the unrolled model, an approach combining iterative MRI
reconstruction steps with learnable neural network layers, stands as the
best-performing method for MRI reconstruction. However, there are two main
limitations to overcome: firstly, the unrolled model structure and GPU memory
constraints restrict the capacity of each denoising block in the network,
impeding the effective extraction of detailed features for reconstruction;
secondly, the existing model lacks the flexibility to adapt to variations in
the input, such as different contrasts, resolutions or views, necessitating the
training of separate models for each input type, which is inefficient and may
lead to insufficient reconstruction. In this paper, we propose a two-stage MRI
reconstruction pipeline to address these limitations. The first stage involves
filling the missing k-space data, which we approach as a physics-based
reconstruction problem. We first propose a simple yet efficient baseline model,
which utilizes adjacent frames/contrasts and channel attention to capture the
inherent inter-frame/-contrast correlation. Then, we extend the baseline model
to a prompt-based learning approach, PromptMR, for all-in-one MRI
reconstruction from different views, contrasts, adjacent types, and
acceleration factors. The second stage is to refine the reconstruction from the
first stage, which we treat as a general video restoration problem to further
fuse features from neighboring frames/contrasts in the image domain. Extensive
experiments show that our proposed method significantly outperforms previous
state-of-the-art accelerated MRI reconstruction methods.
Related papers
- NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - DuDoUniNeXt: Dual-domain unified hybrid model for single and
multi-contrast undersampled MRI reconstruction [24.937435059755288]
We propose DuDoUniNeXt, a unified dual-domain MRI reconstruction network that can accommodate to scenarios involving absent, low-quality, and high-quality reference images.
Experimental results demonstrate that the proposed model surpasses state-of-the-art SC and MC models significantly.
arXiv Detail & Related papers (2024-03-08T12:26:48Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Diffusion Modeling with Domain-conditioned Prior Guidance for
Accelerated MRI and qMRI Reconstruction [3.083408283778178]
This study introduces a novel approach for image reconstruction based on a diffusion model conditioned on the native data domain.
The proposed method demonstrates a significant promise, particularly for reconstructing images at high acceleration factors.
arXiv Detail & Related papers (2023-09-02T01:33:50Z) - Self-Supervised MRI Reconstruction with Unrolled Diffusion Models [27.143473617162304]
We propose a novel self-supervised deep reconstruction model, named Self-Supervised Diffusion Reconstruction (SSDiffRecon)
SSDiffRecon expresses a conditional diffusion process that interleaves cross-attention transformers for reverse diffusion steps with data-consistency blocks for physics-driven processing.
Experiments on public brain MR datasets demonstrate the superiority of SSDiffRecon against state-of-the-art supervised, and self-supervised baselines in terms of reconstruction speed and quality.
arXiv Detail & Related papers (2023-06-29T03:31:46Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
Multi-contrast super-resolution (SR) reconstruction is promising to yield SR images with higher quality.
Existing methods lack effective mechanisms to match and fuse these features for better reconstruction.
We propose a novel network to address these problems by developing a set of innovative Transformer-empowered multi-scale contextual matching and aggregation techniques.
arXiv Detail & Related papers (2022-03-26T01:42:59Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z) - Recurrent Variational Network: A Deep Learning Inverse Problem Solver
applied to the task of Accelerated MRI Reconstruction [3.058685580689605]
We present a novel Deep Learning-based Inverse Problem solver applied to the task of accelerated MRI reconstruction.
The RecurrentVarNet consists of multiple blocks, each responsible for one unrolled iteration of the gradient descent algorithm for solving inverse problems.
Our proposed method achieves new state of the art qualitative and quantitative reconstruction results on 5-fold and 10-fold accelerated data from a public multi-channel brain dataset.
arXiv Detail & Related papers (2021-11-18T11:44:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.